
AFRL-IF-WP-TR-2001-1543

DESIGN TOOLS AND ARCHITECTURES
FOR DEDICATED DIGITAL SIGNAL
PROCESSING (DSP) PROCESSORS

Keshab K. Parhi

University of Minnesota
200 Union Street SE
Minneapolis, MN 55455

July 1996

FINAL REPORT FOR PERIOD 24 AUGUST 1993 - 24 AUGUST 1996

I Approved for public release; distribution unlimited.

20020103 134
INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY
PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

LUIS M. CONCHA
Team Leader
Collaborative Simulation Technology Branch
Information Systems Division
Information Directorate

G. Todd Berry
Acting Chief
Collaborative Simulation Technology Branch
Information Systems Division
Information Directorate

(l
WALTER B. HARTMAN
Acting Chief
Wright Site
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document requires its return.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing

the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

JULY 1996

3. REPORT TYPE AND DATES COVERED

 FINAL,08/24/93 - 08/24/96
4. TITLE AND SUBTITLE

Design Tools and Architectures for Dedicated Digital Signal Processing
(DSP) Processors

6. AUTHOR(S)

Keshab K. Parhi

5. FUNDING NUMBERS

C: F33615-93-C-1309
PE 63739E
PR A268
TA 02
WU 03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Minnesota
200 Union Street SE
Minneapolis, MN 55455

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433" 7334
POC: Luis Concha. AFRL/IFSD. 51901 x3578

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF- WP-TR-2001-1543

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release, distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The work reported in this document is concerned with the development of CAD tools, design methodologies, and
architectures for the following topics of VLSI digital signal processing: high-level transformations and synthesis, discrete
wavelet transform, high-speed digital subscriber loops, and finite field arithmetic for use in Reed-Solomon coders. Through
this research we developed fast and efficient algorithms, ILP models, and tools that would reduce the time to explore the
design space and locate an area optimal design of ASICs for DSP applications within a heterogeneous environment.

14. SUBJECT TERMS

RASSP, discrete wavelet transform, high speed digital subscriber loops
15. NUMBER OF PAGES

116
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR
Standard Form 298 (Reu. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Contents

1 Introduction 2

CAD Tools 3

2 High-Level Synthesis 3
2.1 MARS Design Tool 5

2.1.1 MARS overview 6
2.1.2 Loop-Based Synthesis 6
2.1.3 Module Selection 8
2.1.4 Scheduling 10
2.1.5 Experimental Results 12

2.2 Integer Linear Programming High-Level Synthesis 16
2.2.1 Time-Constrained Scheduling by ILP 16
2.2.2 Counting the Number of Registers During Scheduling 18
2.2.2.1 The Models of Processors and Registers 18
2.2.2.2 The Technique to Count the Number of Registers 19
2.2.2.3 The Number of Registers in Overlapped Schedule 20
2.2.2.4 Registers for Digit-Serial Data Architecture 23
2.2.3 Register Minimization in Architectures with Multiple Data Formats . 26
2.2.3.1 ILP Model for Processor Type Selection 26
2.2.3.2 Counting the Number of Registers During the Time Assignment . . 29
2.2.4 Experimental Result 32

3 Other High-Level Tools 38
3.1 Determination of Minimum Iteration Period 38

3.1.1 A New Algorithm to Determine the Iteration Bound 39
3.1.2 Experimental Results 42

3.2 Exhaustive Scheduling and Retiming 43
3.3 Two-Dimensional Retiming 45

Architectures 47

4 Discrete Wavelet Transforms 47
4.1 Multirate Folding 48
4.2 Register Minimization 49
4.3 Lattice-Based DWT Architectures 51
4.4 Architectures for Tree-Structured Filter Banks 53

5 High-Speed Digital Communications:
HDSL/ADSL/VDSL 54
5.1 Background 56

5.1.1 Motivation 56
5.1.2 Discrete Multitone 57
5.1.3 Carrierless AM/PM Transceiver 59

iii

5.2 Three-Dimensional CAP 61
5.3 ODMA 63
5.4 Simulation Results 64
5.5 LMS Relaxation 65
5.6 Concluding Remarks 68

6 Finite Field Arithmetic and Reed-Solomon Coders 69
6.1 Efficient Power Based Galois Field Arithmetic Architectures 70

6.1.1 Conversion to Power 70
6.1.2 Result Computation 71
6.1.3 Conversion to Conventional Basis 72
6.1.4 Comparison with Other Architectures 73

6.2 Low Latency Standard Basis GF(2m) Multiplier and Squarer Architectures . 74
6.2.1 Parallel-in-Parallel-out Multiplier 74
6.2.1.1 Multiplier Architecture 74
6.2.1.2 VLSI Chip Implementation 74
6.2.1.3 Comparison with Other Multipliers 75
6.2.2 Parallel-in-Parallel-out Squarer 76
6.2.2.1 Squarer Architecture 76
6.2.2.2 Comparison with Other Designs 78
6.2.3 Parallel-in-Parallel-out Exponentiator 79
6.2.3.1 Exponentiation Algorithm 79
6.2.3.2 Exponentiator Architecture 79
6.2.3.3 Architecture Comparison 81

6.3 Efficient Standard Basis Reed-Solomon Encoder 81
6.3.1 Reed-Solomon Encoding Algorithm 82
6.3.2 Reed-Solomon Encoder 82
6.3.3 Comparison with Berlekamp's Dual Basis RS Encoder 84

6.4 Efficient Finite Field Serial/Parallel Multiplication 84
6.4.1 Bit-Serial Finite Field Multiplier 84
6.4.1.1 Multipier Architecture 84
6.4.1.2 Comparison with Other Designs 86
6.4.2 Generalized Serial/Parallel Finite Field Multiplication 87
6.4.2.1 Digit-Serial Multiplication Algorithms 87
6.4.2.2 Multiplier over GF(28) 90

7 Order-Configurable, Power Efficient FIR Filters 92
7.1 Background 93
7.2 Configurable Processor Array 95
7.3 Phase Locked Loop 96
7.4 Simulation 97

8 List of Publications Supported by RASSP 98

References 102

IV

Design Tools and Architectures for Dedicated DSP
Processors

Keshab K. Parhi, Principal Investigator
Professor, Department of Electrical Engineering

University of Minnesota, Minneapolis, MN 55455
Tel: (612) 624-4116
Fax: (612) 625-4583

E-mail: parhi@ee.umn.edu
Web: http://www.ee.umn.edu/users/parhi

July 15, 1996

Abstract
In the past three years, we have addressed and developed CAD tools, design

methodologies, and architectures for the following topics of VLSI digital signal process-
ing: high-level transformations and synthesis, discrete wavelet transform, high-speed
digital subscriber loops, and finite field arithmetic for use in Reed-Solomon coders.
This report summarizes our results in these areas. Through this research we developed
fast and efficient algorithms, ILP models, and tools that would reduce the time to
explore the design space and locate an area optimal design of ASICs for DSP applica-
tions within a heterogeneous environment. In this project, the phrase "heterogeneous
architectures" defines any architecture that contains different types of functional units
(including algorithms and implementation styles) to process the same type operations.
By utilizing a heterogeneous library, one removes the word size and implementation
style restrictions and allows the system to explore a much wider design space. Other
tools and methodologies related to high-level synthesis were also developed. We formu-
lated a better algorithm to determine the minimum iteration period of any recursive
DSP algorithm. We developed an exhaustive technique to locate all valid schedules and
retimings of strongly connected data-flow graphs (DFGs), and we derived ILP models
for efficient two-dimensional retiming. By extending the folding technique to include
multirate constructs and developing a new approach to minimize the overall register us-
age, new and efficient architectures for discrete wavelet transforms using lattice-based
architectures and tree-structured filter banks were developed. For digital subscriber
loops, we investigated and characterized different approaches to minimizing the echo
problem that are inherent with the transmission media. New efficient architectures for
arithmetic operations within the finite field were developed and implemented. These
new architectures were used to develop a fast and power efficient Reed-Solomon en-
coder. In our study of low-power design methodologies, we have developed a novel
order-configurable architecture for FIR filters. A single chip can be configured as an
FIR filter with a filter length up to 32 while consuming minimal power.

1

1 Introduction

The rapid design of high-performance and low-power dedicated digital signal processing

(DSP) architectures requires appropriate selection of algorithm, architecture, and implemen-

tation style and usage of efficient synthesis tools. With the additional pressure of designing

new high-speed architectures or re-designing an existing architecture that are area and power

efficient in less time, the task becomes even more challenging. This is because to meet the

new specifications, many new designs may need to be implemented using heterogeneous com-

ponents where the algorithms and implementation styles used in the design are varied. For

example at a lower level, there may exist functional units that implement full adders using

a ripple carry or manchester carry algorithm, and within each alogorithm type there may

exist adders that have implementation styles that are bit-serial, digit-serial, or bit-parallel.

With these additional parameters and demands, the design space has become much larger

and more uneven. Better tools and design methodologies become more important to quickly

and efficiently search the space in an efficient manner.

Concurrent to developing tools for design space exploration, one must also investigate

difficult DSP applications to understand and develop new design methodologies that can be

extended into the developing CAD tools. By exploring the interaction between algorithm

and architecture, one is able to gain a deeper understanding of the way different design

tradeoffs and optimizations impact the final architecture.

In the past three years, we have addressed and developed CAD tools and design method-

ologies to perform high-level transformations and synthesis for DSP applications. On a

parallel track, we have also investigated and developed design methodologies and architec-

tures for discrete wavelet transforms, echo cancellers for high-speed digital subscriber loops,

and finite field arithmetic for use in Reed-Solomon coders. Our goals were to develop fast

and efficient techniques and tools that would reduce the time to explore the design space and

locate an optimal design of application specific integrated circuits or ASICs for DSP appli-

cations. This report summarizes our approaches taken to achieve our goals, the algorithms

that we utilized, and our experimental results that we gathered.

This report is divided into two main sections: CAD tools and architectures. Within the

CAD tools section we present the work performed in developing high-level synthesis tools

(section 2) and other tools that we developed as we addressed the high-level synthesis problem

(section 3). Under high-level synthesis, section 2.1 describes the Minnesota ARchitecture

Synthesis (MARS) tool that is based on the loop-list heuristic approach and in section 2.2

we present our integer linear programming (ILP) models. In the other tools section, we

present tools that solve problems which are related to the topic of high-level synthesis. We

developed an algorithm that determines the minimum iteration bound of a data-flow graph

(DFG) (section 3.1), a method in exhaustively locating all schedules and retimings for a

given DFG (section 3.2), and a technique to perform two-dimensional retiming (section 3.3).

In the architectures section, we present our work in developing algorithms and architectures

that have high-performance, consume less power, and are area efficient for discrete wavelet

transforms (section 4), echo cancellers for high-speed digital subscriber loops (section 5),

finite field arithmetic for use in Reed-Solomon coders (section 6), and order-configurable

FIR filters (section 7).

CAD Tools

2 High-Level Synthesis

In the past ten years, there has been a great deal of activity in developing high-level synthesis

systems for automatic design of high performance, dedicated architectures, especially for

digital signal processing (DSP) applications. Many of the more common techniques have

been covered in tutorials and books [1] -[5]. More recent techniques include [6] -[26]. In

designing real-time DSP systems, the use of high-level synthesis has become a more common

and crucial step in the design flow because many real-time applications which require high

sample rates or low power consumption can only be implemented by dedicated architectures.

High-level synthesis can be viewed as a series of steps consisting of describing the behavior

of the system to be designed as separate but interrelated operations (with either a high-level

language or graph model such as a synchronous data-flow graph (DFG) [27]), selecting and

allocating hardware resources, scheduling the operations to control time steps, and generating

the control unit to synchronize the execution of the operations within the final design [1] [2]

[3]. Of the entire synthesis problem, hardware selection/allocation and scheduling are the

two most difficult and crucial steps because decisions made here directly affect the final cost.

Both of these tasks have been shown to be NP-complete [28]; therefore, many schedulers

have been proposed with varying results and performance. Although heuristic methods can

generate good results in short CPU time, they cannot guarantee optimal solutions. More

formalized solutions using integer linear programming (ILP) techniques have been proposed

[21]-[26] within the last few years. These models tend to be more flexible and are capable

of generating optimal solutions but they suffer in exponential increases in run times as the

model constraints become less restrictive.

Most of the previously developed synthesis systems assume that all same type operations

will be assigned to one type of functional unit (or processor) (e.g., all addition operations

will be processed by full adders). With this type of limited library, the solutions generated

by these systems are not as cost optimal as solutions generated by systems using a library

that contains multiple functional units for each type of operation. For example, Fig. 1 shows

a simple DFG that consists of a set of identical nodes and are interconnected into two loops.

Let us assume that the available library only contains one processor type, PI which has a

computational delay of 1 time unit (t.u.) and an area cost of 20 units. If the target iteration

period for this DFG is 5 t.u., one possible processor allocation solution will require two PI

processors for a total area cost of 40 units and a valid final schedule is shown below:

time 12 3 4 5

PU
Ph

A B C D E
F G

From this schedule, we can see that processor Plx is 100% utilized but processor Pl2 is only

40% untilized. If the processor library is expanded to include a second processor, P2 (with

a computational delay of 2 t.u. and an area cost of 10 units), a better processor allocation

can be generated. One solution will consist of one PI and one P2 processor which will have

a total area cost of 30 units and a valid final schedule is shown below:

time 12 3 4 5

PI
P2

ABODE
F F G G

This schedule shows that processor PI is still 100% utilized and that processor P2 is 80%

utilized. This solution also uses 25% less area than the previous solution.

Figure 1: A simple DFG consisting of identical operations and two feedback loops.

More recently, a few systems allow for different types of processors for same type oper-

ations; however they only utilize homogeneous architectures where all functional units are

implemented using a single implementation style such as bit-parallel [16] -[20], or bit-serial

[6], [29]. Although this allows for expanded libraries and a slightly wider design space, it

still restricts the design to one type of implementation style or word length.

We have developed two different solutions to high-level synthesis using heterogeneous

functional unit libraries. One is based upon heuristic techniques which provide fast solutions

but cannot guarantee their optimality and a second is based upon integer linear programming

(ILP) models that can guarantee optimal solutions but suffer from exponential increases in

run times as the design constraints are relaxed. In this section we provide more details of

both techniques and provide results of our experiments using a small heterogeneous library.

2.1 MARS Design Tool

In our research we addressed the automatic allocation of hardware functional units from a

heterogeneous library during the scheduling process to produce low cost area designs. In

this tool, functional units include processors such as adders and multipliers and data format

converters. The advantage of our approach is that we allow the design of heterogeneous

architectures using different types of functional units (including implementation styles) to

process same type operations. By utilizing a heterogeneous library, one removes the word size

and implementation style restriction and allows the system to explore a much wider design

space. However, if one allows the use of heterogeneous processors in the final architecture,

the data format of one processor may not necessarily be the same as another processor.

For example, the final design may contain an adder which computes one word in one clock

cycle and a second adder which processes a half-word in one clock cycle. This leads to the

need for data-format converters which accept input data in one format and generate output

data in a different format (in our experiments, the data format may be bit-serial or digit-

serial or bit-parallel). Therefore, the allocation, scheduling, and cost of these converters are

also taken into account during the synthesis process. This high-level synthesis tool called

the Minnesota ARchitecture Synthesis (MARS) System is based on our novel iterative loop

scheduling and allocation technique that permits implicit retiming and pipelining. It also

supports the unfolding transformation. In addition the synthesized architecture data-flow

graph is generated by using the folding transformation.

2.1.1 MARS overview

The flowchart in Fig 2 displays the basic MARS framework. Our algorithm starts from the

generation of the initial prototype schedule. The initial schedule helps the system generate

a set of initial module solutions for the specified iteration period. The scheduling and

resource refinement algorithm will then be invoked to determine the lowest cost processor

and converter allocation that will produce a valid schedule for the given design parameters.

2.1.2 Loop-Based Synthesis

DSP algorithms are continuous and repetitive in nature; in other words, the operations

are repeated in an iterative manner as new samples are processed. Because many DSP

algorithms contain feedback (or recursive) loops , the operations of each loop for one iteration

must be completed before the next iteration can be initiated and this imposes the greatest

restrictions on the DFG. [30],[31]. Feedback limits the most obvious methods for improving

the performance of the final architecture (e.g., pipelining). [31]. One cannot pipeline the

feedback loops to any arbitrary level by inserting latches, because the pipelining latches

would alter the number of delays in the loops and, hence, the original functionality of the

6

C""input DFG & ->.
Processor Library^__^'

Locate Loops and Paths
Generate Initial Schedule

Generate initial solutions
for critical loop

Module Selection and Scheduling

(^Done! J}

Figure 2: A flowchart showing the major steps of MARS-II.

DFG. The non-recursive (or feed-forward) sections are less restrictive because one can always

pipeline these sections at the feed-forward cutsets to achieve the desired sample rate; but

at the expense of greater latency. Because of this constraint, MARS first schedules the

recursive operations followed by the non-recursive operations during the scheduling process.

This methodology is known as the loop-based approach to high-level synthesis.

The first step of loop-based synthesis is to identify all of the loops. MARS utilizes the

loop search algorithm described in [32] which has a complexity that is linear in the number

of nodes plus edges. At this point, MARS also calculates the loop bound of every loop

which will be used later in the synthesis process. The loop bound, To,, defines the minimum

time required to complete one iteration of a loop, and is calculated as follows for loop j:

Tibj = Tij/Dij, where T^. and D^ represent the computation time and the number of delays

in loop j [31]. At first, MARS assumes that the operations are mapped to the fastest

processors available in the library. This set of loop bounds define a lower bound on the

iteration period, T, for the DFG. This bound, known as the iteration bound or T^, is the

minimal time required for all recursive loops to complete one iteration and is determined by

Table 1: Library of Processor Types (wordlength=16)
type processor C L m I/O

■A-bp Bit-parallel adder 1 1 53 bp

■A-hp Half-word parallel adder 1 2 19 hp

Ads 4-bit digit-serial adder 1 4 6 ds

Mbp Bit-parallel multiplier 5 1 331 bp
Mhp Half-word parallel multiplier 6 2 173 hp

Mda 4-bit digit-serial multiplier 9 5 86 ds

Table 2: Converter r. types
type conversion C L m

Vbp,hp bp-^hp 0 1 3
vbp,ds bp^ds 0 3 4
vhp,bp hp^bp 1 1 3
vhp,ds hp-^ds 0 2 3
vds,bp ds^bp 3 3 4
vds,hp ds^hp 2 2 3

locating the maximum loop bound [30],[31].

Because large number of loops may exist in the DFG, MARS reduces the set of all loops to

a smaller subset which will be used for scheduling [14], [15]. If nonrecursive operations exist

in the DFG, MARS locates all of the feed-forward paths which only contain nonrecursive

operations. MARS also reduces this set of all paths [14], [15]. MARS now builds an initial

schedule which will be used for generating initial solutions. Currently, MARS uses an 'As

Soon As Possible' (ASAP) technique with the assumption that an infinite number of resources

are available.

2.1.3 Module Selection

Module selection is the task of selecting a set of functional units from a processor library

which is capable of satisfying all of the precedence constraints for the specified iteration

period while minimizing a cost function. Table 1 shows the heterogeneous library used

by MARS for our experiments. This library was also used in [25],[26] (see section 2.1.5

for comparison of results). This library includes both functional units and data-format

converters. Each module description consists of the computational delay or latency, C,

the pipeline period, L, the area cost, m, and its data format. The computational latency

represents the time required for one operation to complete, from input to output (note

that one computation does not necessarily compute a complete word). The pipeline period

represents the minimum time required between successive word computations in the same

functional unit.

The implementation of module selection within MARS is a two phase approach. In phase

one, we generate a small number of initial solutions based on the characteristics of the loops

8

and in phase two, we refine and generate a few more initial solutions based on the number

of total operations in the DFG.

Every loop that has a loop bound equal to the iteration bound is considered a critical

loop. Because critical loops are the most restrictive paths in the DFG, their operations must

be scheduled onto the fastest processors of any solution. Therefore MARS utilizes the initial

schedule to generate a few partial solutions to satisfy the critical loops. These solutions

assume that all same type operations will be assigned to one processor (e.g., all additions

to a bit-parallel adder). Any valid initial solution consisting of Ai type adders and M, type

multipliers must satisfy the following criteria for every critical loop, cl:

T > NMcl * {{CVi. + CVJ + CMj) + NAcl * (CAi) (1)

where T represents the iteration period, NAcl and NMC, represent the number of addition

and multiplication operations in cl, CAi and CM, represent the computation time of the

adder and multiplier, and CVij and C„ . represent the pipeline latency of the data format

conversion from i to j and from j to i, respectively.

Fig. 3 shows a solution generated by MARS for a simple IIR filter commonly known as

a biquad filter. If we view the nodes as operations and ignore the data format converters,

we can see that this filter contains two loops, of which one is critical. Using the fastest

processors in the library shown in Table 1, the loop bounds are: TlbL = 6 t.u. and Tn,L =

3.5 t.u. For an iteration period of 7 t.u., only two initial solutions satisfy equation 1: Si =

[Abp, Mbp] and S2 = [Ahp, Mhp\.

To measure the effectiveness of these initial solutions, we define a resource constraint

inequality which when satisfied will ensure that there are enough time steps to which all

operations may be scheduled if and only if no precedence constraints exist in the DFG:

g PROCVi > Nu (2)

where U and Nu represent an operation type and the total number of operations in the DFG,

FU represents the number of functional unit types that can compute U, LU{ is the pipeline

period of the type i functional unit, and PROCui is a variable which represents the number

of functional units of type i which can compute U.

9

Because the initial solutions were generated to satisfy the critical loops, they may not

satisfy (2), especially for applications that contain nonrecursive operations. Note that (2) de-

fines one linear inequality for each U type operation where the number of variables (PROCui)

are equal to the number of processors capable of computing a U type operation. If a solution

to this inequality is also forced to satisfy:

FU

min{ J2PROCVi * mPu.), (3)
i=i

we can use (2) and (3) to refine the initial solutions or generate new ones (minQ is a mini-

mizing function).

In the biquad filter example, one of the initial solutions did not satisfy (2). Therefore

MARS has to refine the set of initial solutions. The refined initial solutions are: Si = [A^,,

Mbp] (cost = 384), S2 = [Ahp, Ads, Mhp, Mds] (cost = 284).

2.1.4 Scheduling

For scheduling and resource allocation, we use an iterative approach that includes an in-

cremental allocation and elimination refinement step to achieve the low cost solution. After

MARS generates a set of initial solutions, it chooses the low cost solution to become the

solution-under-test (SUT). The final step is to use the SUT (with allocated data format

converters) and verify if a valid schedule can be constructed. The MARS scheduler will start

from the initial schedule and then steps through the schedule at each time step; bind oper-

ations to processors. During the scheduling, some time steps may contain resource conflicts

(when more operations are scheduled at a time step than available processors). To resolve a

conflict at a time step, MARS uses a simple priority function which identifies an operation

to be bound to a processor at that time step (additional data format converters, if needed,

are also allocated at this time). After all available processors at a time step are exhausted,

the remaining unbound operations are reassigned to the next time step. This technique

is repeated until a valid schedule is obtained or MARS encounters a time step where the

resource conflicts cannot be resolved.

Currently the priority values are based upon two criteria: the flexibility available to an

operation, and the type of successor operation. We define flexibility, F, to be the number of

10

time steps in which an operation can be assigned. The flexibility for operations in the loops

can be easily calculated before performing the scheduling step:

Fh=T*Dk-Tlbi

where Fh is the flexibility associated with loop /,- (note that Tlbi is determined by using

the fastest processors in the SUT). Each loop will have its own flexibility and operations

which belong to multiple loops will have a flexibility equal to the smaller loop flexibility.

Non-recursive operations have infinite flexibility because we do not place restrictions on the

latest execution time. Operations that have greater flexibility will have lower priority and

operations in the critical loops will have the highest priority. As the scheduling process

progresses, the flexibilities change as operations are bound to the processors of the SUT or

reassigned to new time steps. The flexibilities are also affected by the allocation of required

data-format converters.

The second criterion to determine the priority value is only considered if two or more

operations have the same flexibility. This criterion checks the operation type of the successor

of each operation that is being considered for processor binding or time step reassignment.

MARS gives higher priority to operations that have successor operations which provide for

greater overlap of different operation types between the loops.

For cases where MARS cannot resolve all resource conflicts, the SUT becomes invalid.

Instead of eliminating the SUT, MARS uses an iterative approach that allows for incremental

processor refinement for invalid solutions. Let us assume that the current invalid SUT

contains 1 Abp and 2 Ahp. MARS will check the utilization of each functional unit in the SUT

and then make an incremental refinement on the SUT. If all processors have an operation

bound to it, MARS allocates another lowest cost functional unit of the SUT (e.g., another

Ahp). However, if one of the Ahp is never utilized, MARS would not allocate another Ahp.

Instead, MARS would remove one Ahp and allocate one Abp unit. This simple refinement step

allows MARS to avoid unnecessary allocation of functional units that will never be used. The

cost of this newly refined solution is then compared with the other initial solutions generated

earlier and the lowest cost solution becomes the new SUT. This iterative loop continues until

a valid schedule can be generated for a SUT which becomes the low cost solution.

11

For the biquad filter example, S2 is the initial low cost solution and it becomes the SUT.

MARS is able to produce a valid schedule for S2 as shown with the DFG of the final solution

(including data-format converters) in Fig. 3.

2.1.5 Experimental Results

The fifth-order wave digital elliptic filter has been used extensively for high-level synthesis

[1]; therefore, we ran a series of experiments using various libraries found in previous work

related to module selection. Table 3 contains the results of module selection for a small

library presented in [19]. This library only contains non-pipelined processors consisting of

two adders (Afast with a computation time of 1 t.u., and Asiow with a computation time of 2

t.u.) and one multiplier (M with a computation time of 2 t.u.). In Table 3 the first column

shows the results of [19] and the second column contains the results produced by MSSR [20]

(note that the experiments with MSSR were performed with only Ajast and M processors).

time 12 3 4 5 6 7

Ahp'- 2 2 114 4
Ads: 3 3 3 3
Mhp: 5 5 6 6 7 7
Mds: 8 8 8 8

Figure 3: The valid schedule and DFG of the biquad filter showing the final assignment of
operations to processor types and the data-format converters.

We also show the optimal solutions generated by the ILP models of [25] along with the

results of MARS. This table shows that MARS is able to generate optimal solutions while

[19] and MSSR could not for all cases.

12

Table 3: Comparison with [10], MSSR, ILP models, and MARS using the homogeneous
library from [10].(CA/aj(= 1,CAslow = 2,CM = 2)

[19] MSSR [20] ILP MARS

16 NA NA 3Afast, 2M ZAfast, 2M
17 SAfast, M 3A/0Si, 3M 2AfasU 2M 2Afast, 2M
18 2Afast, 2M 2Afast, 2M 2Afast, 2M 2Afast, 2M
20 NA NA lAfast, lAslow, IM lAfast, lAslow, IM
21 lAfast, lAsiw, IM 2Afast, IM lAfast, lAslow, IM lAfast, lAslow, IM
26 NA NA 3Asl0W, IM ZAsiow, IM
28 lAfast, IM NA lAfast, IM lAfast, IM
54 lAsiow, IM NA !Aslow, IM lAsiow, IM

We also ran experiments on a larger library of non-pipelined processors used by MSSR

[20] and these results are shown in Table 4. We compare our results with those of MSSR

and of the ILP models of [25] in Table 5. Here we also show the cost of the solution and the

run times in CPU seconds as run on a DECstation 3100 with 16MB of memory (Note: the

CPU times for MSSR is an average time over all examples). The ILP models were solved on

a SUN Sparestation 20 and the models became too large to solve for T > 65. From Table 5

we can see that MARS generates better solutions than MSSR and in less time. Although

ILP models can provide optimal solutions, this table also shows that they can become too

large to solve.

Table 4: Homogeneous library used by MSSR [11] (non-pipelined processors, C = L).

Add C L m Mult C L m

Al 1 1 16 Mi 1 1 256

A2 4 4 5 M2 16 16 32

As 16 16 2 M3 256 256 2

We also experimented with several other common DSP benchmarks using the heteroge-

neous processor and converter library shown in Table 1. In Table 6 we directly compare

the performance of MARS with the ILP models developed for the same problem (note, the

experiments for both were performed on a SUN Sparestation 2 unless marked by an '*' which

were run on a SUN Sparestation 20). This table has been broken down into three sections,

13

Table 5: Comparison of MSSR, ILP models, and MARS using the homogeneous library used
by MSSR.

MSSR [20] ILP* MARS
T Allocation Cost CPU Allocation Cost Allocation Cost CPU

13 NA - - 3Ai lMi 304 3Ai lMi 304 0.35

14 4Ai, 2Mi 576 9.5* 3Ai lMi 304 3Ai lAfi 304 0.35

15 3Ai, lMi 304 9.5* 2Ai lAfi 288 2Ai lAfi 288 0.32

16 2AU 1A2, lMi 293 9.5* 2Ai lMi 288 2Ai lMi 288 0.32

18 2Ai, lMi 288 9.5* 2Ai lMi 288 2AX lAfi 288 0.32

22 NA - - lAi 1A2, IA3, lMj 279 IAX 2A2, lMi 282 0.40

23 NA - - lAi 1A2, lMi 277 IAX 1A2, lMi 277 0.32

27 lAi, lAfi 272 9.5* lAi lAfi 272 lAi lMi 272 0.33

58 NA - - 3Ai 4M2 176 ZAi 4M2 176 4.20

60 3Ai, 4M2 176 9.5* 2Ai 4M2 160 2Ai 4M2 160 3.60

64 NA - - lAi 4M2 144 lAi 4M2 144 3.60

70 lAi, 4M2 144 9.5* Too Large - l^i 4M2 144 3.60

74 NA • - - Too Large - IAX 2M2 80 0.86

93 lAi, 2M2 80 9.5* Too Large - IAX 2M2 80 0.86

140 NA - - Too Large - 1A2 1M2 37 0.50

156 1A2, 1M2 37 9.5* Too Large - 1A2 1M2 37 0.50

240 NA - - Too Large - 2AZ 1M2 36 0.72

288 2A3, 1M2 36 9.5* Too Large - 2A3 1M2 36 0.72

432 NA - - Too Large - IA3 1M2 34 1.10
448 1A3, 1M2 34 9.5* Too Large - IA3 1M2 34 1.10
944 NA - - Too Large - 2A3 4M3 12 9.30

1040 2A3, 4M3 12 9.5* Too Large - IA3 4M3 10 11.40

the desired iteration period, the results and performance of MARS, and the results and

performance of the ILP models of [25].

In results columns, Table 6 shows the final solution (processor and converter allocation),

the final cost, and the CPU time in seconds. Table 6 shows that MARS can generate similar

solutions in one to two orders of magnitude less time than the ILP approach (See section 2.2).

14

Table 6: Time assignment benchmark results and comparisons between MARS and ILP
models for the heterogeneous library of Table 1.

T MARS cost CPU ILP model cost CPU

5th Order Wave Elliptic Filter
25 ZAbp,\Mbp 490 0.36 3Abp,lMbp 490 3.16
26 2Abp,lMbp 437 0.32 2Abp,lMhp 437 26.2
27 lAijp^lAhp^lM^^Zvijp^p^lv^p^p 431 0.23 lAhp^AhpilMttpjlvhp^pilvhpfip 428 658
28 lAbp,lAhp,\Mbp,lvbp,hp-,1-Vhp,bv 409 0.88 \Aiyp,lAhp,lMbp,lvbpthp^hp,bp 409 417
31 3Ahp,lMhp 230 0.37 3Ahp,lMhp 230 *

34 2Ahp„\Ads^Mhp 223 0.39 2Ahp,lMhp 211 *

4th Order Lattice Filter
14 3Abp,2Mbp 821 0.20 ZAbp,2Mbp 821 1.58
15 2Abp,lMbp 437 0.20 2Abp,lMbp 437 3.15
16 lAbp,2Ahp,lMbp, lvbPthp-Xvhp,bp 428 0.30 lAbp,lAhp,1.Mbp,lvbPthp,lvhp,bp 409 18.0
17 lAbp,lAhp,lMbp,lvbp,hp,1-Vhp,bp 409 0.48 lAbp,lMbp 384 21.2
18 4Ahp,lMhp 249 0.20 2Ahp,lAds,lMhp,lvhptds,lvds,hp 223 11.9

4th Order Jaumann Filter
16 2Abp,lMbp 437 0.15 2Abp,lMbp 437 14.9
17 lAbp,lMbp 384 0.17 lAbp,lMbp 384 14.3
18 lAbp,lMbp 384 0.73 lAbp,lMbp 384 39.9
19 3Ahp,lMhp 230 0.18 2Ahp,lMhp 211 24.7
20 2Ahp,lMhp 211 0.15 2Ahp,lMhp 211 48.6
23 4Ads,lMhp, lvhP,ds^Vds,hp 203 0.17 - - -

24 3Ads,lMhp, lvhp,ds^Vds,hp 197 0.43 - - -

4 stage Pipelined Lattice Filter
3 2Abp,7Ads,5Mbp, 6vbPtds 1827 0.27 2Abp,7Ads,5Mbp, 6vbPtds 1827 23.6
4 lAhp,9Ads,3Mbp,lMhp,2Mds,lvbp,hp

^hp,dsi^-vhp,bpi '^bp,dsi^vds,hpi^ds,bp

1458 0.30 2Ahp,7Ads,4Mbp,

^vbp,hpi^vbp,dsi *-Vhp,bpi ±Vhp,ds

1440 58.2

5 llAds,3Mbp, 9vbptds, 3Vds,bp 1107 0.72 9Ads,3Mbp, 9vbp^s, 2vds,bp 1091 40.6
6 9Ads,2Mbp,lMhp,

LVhp,ds)^vds,bpiVvbp,dsi ^vds,hp

927 0.65 8Ads,2Mbp,

6vbpjds,lVhptds, lVds,bpAVds,hp

917 77.2

16 Point FIR Filter
1 60Ads,BMbp, 24vbp,ds,24vds,bp 3200 0.30 60Ads,8Mbp, 2AvbPtds,2Avds,bp 3200 3.53
2 30Ads,4Mbp, 12vbPids,^Vds,bp 1616 0.25 30AdsAMbp, 12%>,ds,12vds,&p 1600 5.65
3 26Ads,3Mbp,8vbPtds,8vds,bp 1213 0.95 20 Ads ,3Mf,p ,8vbP)ds fivds,bp 1177 7.85
4 l5Ads,2Mbp, 6vbPtds,8vds,bp 808 0.28 l5Ads,2Mbp, 6vbPidsfivds,bp 800 7.25
5 15Ads,lMbp,lMhp,lMds,

^■vhp,dsi^vbp,dsi^vds,hpi^vds,bp

721 0.49 12Ads,lM6p,3Mds,3vdS)6p,3u6P)ds 685 20.4

6 l3Ads ,lMbp,2Mds ,3u6P)ds ,6vds,bP 617 0.64 10Ads,lMbp,lMhp,

^vbp,dsi^hp,dsy^vds,bpi^vds,hp

578 121.87*

7 l2Ads,lMbp,lMds$vbp,ds,7vds,bp 529 0.55 - - -

8 8Ads,lMbp,3vbp!ds,8vds,bp 423 0.30 - - -

15

2.2 Integer Linear Programming High-Level Synthesis

As stated earlier, integer linear programming (ILP) solutions have been recently used to

solve the scheduling problem in high-level synthesis. By modeling the scheduling task as

an ILP problem, the models provide the flexibility to include new design considerations

and optimal solutions. Therefore the ILP formulation is ideal for modeling the scheduling

task in a heterogeneous synthesis environment. In our research, we have developed a set

of efficient ILP models for high-level DSP synthesis within a heterogeneous environment.

This approach leads to faster solutions than other ILP approaches by bounding the search

space of the variables. Furthermore, this approach can also perform automatic retiming and

pipelining as well as unfolding to improve the processor utilization. These models have been

designed to perform automatic allocation of hardware functional units from a heterogeneous

library during the scheduling process while minimizing the overall area cost. The functional

units in these models include processors, data format converters, and registers.

2.2.1 Time-Constrained Scheduling by ILP

The time-constrained scheduling determines when and in which processor each computation

should be executed to minimize the cost, such as the number of processors, while satisfying

the speed requirement. The time assignment step determines the execution time of each

node in the data-flow graph (DFG). It is followed by the processor allocation step which

determines in which processor each computation is executed. In this section, the integer

linear programming model for time assignment supporting overlapped schedule (or functional

pipelining) and structural pipelining is introduced.

We use the following notation to describe a synchronous DFG. DFG = (N, E) where N

is the set of nodes and E is the set of edges in the DFG. Each node i G N has a scheduling

range defined by a lower and upper bound, LBi and UBi. These are the earliest and the

latest time steps, respectively, in the scheduling range. LBi and UBi can be determined

as the as soon as possible (ASAP) schedule and the as late as possible (ALAP) schedule,

respectively. Ri denotes the scheduling range of node i, which is the closed time interval

[LBi, UBi\. We define Ri + k to denote the interval [LBi + k, UBi + k] where k is an any

16

integer.

Let Ca and La denote the computation latency and the pipeline period of node a, respec-

tively. The computation latency represents the time from an input to its associated output.

If the computation of node a starts at time step j, the result is output at time step j + Ca-

The pipeline period represents the minimum time between successive computations. If the

computation of node a is initiated at time step j on a processor, any other computation

cannot be initiated on the same processor until j + La.

The ILP model minimizes the the cost, M, which is the number of processors (4) (in the

case when only one type of processor is used), subject to the constraints (5), (6), and (7).

The following parameters are used in the ILP model.

TT is the specified iteration-period.

i G N is a node.

j is a time step.

Xij is a binary variable, and Xij = 1 means that the computation of the node i starts at the

time step j.

e — (a,b) e E is an edge directed from node a to node b with a delay count We.

Ca is the computation latency of node a.

La is the pipeline period of node a.

Minimize COST=M (4)

2>y = l VieN (5)

UBa j-WeTr

E xaja+ E Xbjb<l Ve = (a,b)eE,je(Ra + Ca-l)n{Rb + WeTr), (6)
ja=j-Ca+l jb=LBb

E
m M^JT'-I Li_l
E E xi,J+kxTr-p +

TT

><M J = 0,l,...,Tr-l (7)

The assignment constraint (5) ensures that each node % has only one start time in its

scheduling range R{.

For every directed edge (a, b), the computation of node b must start after the computation

of node a is completed. This is ensured by the precedence constraint (6).

17

Given the iteration period Tr, the time class J = 0,1,..., Tr - 1 must hold. Each time

step j belongs to the time class J = j — [jr\Tr. In other words, the time class J consists of

time steps J, J + Tr, J + 2Trr .. In the overlapped schedule, the computations executed at

time steps belonging to the same time class are executed concurrently in different processors.

The inequality (7) is used to count the required number of processors. The first term of the

left-hand side of (7) is the number of nodes whose computation is initiated or being executed

at the time class J. When the pipeline period of a node is longer than the iteration period,

the processor must be counted multiple times, h^- , since the node occupies the processor

for more than one iteration period. This accounts for the second term in constraint (7). The

inequalities (7) for all the time classes make the integer variable M no less than the largest

required number of processors.

2.2.2 Counting the Number of Registers During Scheduling

In [33], a technique was proposed to count the number of registers during resource-constrained

scheduling. Since the technique was developed for non-overlapped scheduling, it cannot be

directly applied to the time-constrained overlapped scheduling. In this section, we generalize

the technique for the overlapped scheduling. Furthermore, it is extended so that registers of

general digit-serial data can be counted.

2.2.2.1 The Models of Processors and Registers

The computation latency is the difference in time steps from an input of a data to an

output of a result associated with that input data. Let Ca denote the computation latency

of a processor executing the computation of node a. If the computation of node a starts at

time step j, its result becomes available as input data to computations of other nodes at

time step j + Ca. Here, 'available' means the data is stored in a register and can be read by

processors after and on the time step j + Ca. From this view point, there are two models

of processors: one where a processor has its own dedicated register to store the output data

as illustrated in Fig.4(a); and the other where a processor does not have such a register at

the output as illustrated in Fig.4(b). In the latter case, the computed result is latched by a

register outside the processor at the end of the time step j + Ca — 1 and the data becomes

18

Processor
From

PrOCGSSOr other processors

1 CM
<D <D
O) O)

to
CD

». s to
'n>

0)
CD

s to
'n>

C tl) a>
CD CD
Q. Q.
Q. 0.

< CM

CD CD
O) O)
CO CD CO

CD
v>

CD
c CD c
CD CD
a. a.

Q. a.

(a) (b)

Figure 4: Processor models. In this case, processors are pipelined in two levels, (a) A
processor has its own output register, (b) A processor does not have its own output register.

available from the time step j+Ca- Registers which are not dedicated to particular processors

can be shared or commonly used by all processors (note that processors may have their own

internal registers for pipelining but these registers cannot be commonly used by processors).

Although the latter model would impose longer logic level critical path on the last pipeline

stage of a processor, it could lead to synthesized systems which use less number of registers

and therefore less chip area. In this paper, we use the model of Fig.4(b). Processors are

assumed to have no dedicated registers at the output.

2.2.2.2 The Technique to Count the Number of Registers

In this section, the technique to count the number of registers proposed in [33] is briefly

introduced.

The life-time of data is defined as the duration from the time step the data is produced to

the time step the data is last used. If the life-time of data contains a time step j, the data is

said to be live at j. The data live at time step j must be stored in a register at j. Therefore,

the required number of registers at a particular time step is equal to the number of data live

at that time step. Let ba denote the node which last uses the data output from node a. Note

that the output data of node a becomes live at the time step j if the computation of node

a begins at the time step j — Ca. Whether the data produced by the execution of node a is

live at time step j is checked by

j-Ca UBa j-1 UBb

/ J
xa,ja ~ 2^/ Xa,ja ~ Z-J

Xh,jb + Z_^ xbb,jb
ja=LBa ja=j-Ca+l jb=LBb jb=j

2 if data is live at j
(8) 0 if data is not live at j

By summing the left-hand side of (8) for all the nodes in N, we get twice the number of live

19

data at time step j. Thus, we obtain

(j-Ca UBa j-l UBb \

E Xaja ~ E XW ~ E Xh,jb + E Xh,jb < ^MR (9)
ja=LBa ja=j-Ca+l jb=LBb jb=j)

where MR is the number of registers. By applying the inequality (9) to every time step j,

the required number of registers, MR, can be obtained.

In general, the node a may have more than one immediate successor nodes. If i is an

immediate successor node of node a, then the edge (o, i) must exist in E. The life-time of

the data output by node a ends at the time step when the last immediate successor node is

executed. Generally, we cannot know prior to scheduling which immediate successor node

is executed last. Therefore, we must use the inequalities (9) for all edges if which successor

node is last executed is not known [34]. This is represented as

{j-Ca UBa i-i UBb }

E Xa,ja ~ E XW ~ E Xbjb + E Xb,jb \ < 2MR
ja=LBa ja=j-Ca+l jb=LBb jb=j J

v^e£„J = o,il...,Tr-i. (10)

where Es is the set of edge sets where each element set, E0, is the set of edges such that

no two edges have the same starting node. Thus, each EQ corresponds to a combination of

nodes and the immediate successor nodes. Theoretically, there exist FLew sa combinations

of such edges and therefore UaeN sa elements in Es, where sa is the number of immediate

successor nodes of node a. However, whether an immediate successor node would last use

the data may be known prior to scheduling by means of transitivity analysis. We can reduce

Es by eliminating some element sets E0 which contain the edge (a, b) where node b is known

not to be the last node to use the data of node a.

2.2.2.3 The Number of Registers in Overlapped Schedule

While non-overlapped scheduling of an iterative processing algorithm derives the schedule

where all the computations in the current iteration are executed within an iteration period,

the computations in the current iteration are distributed over several iteration periods in

overlapped schedules [35, 36, 37]. Therefore, execution of current iteration overlaps with the

previous and subsequent iterations. In this case, the life-time of a data may be longer than

the iteration period and may overlap with itself for some time classes as shown in Fig.5. We

20

a

O-

j+Tr

b o
-►f a i

Tr

o
(a) (b)

Figure 5: Register usage in an overlapped schedule, (a) The life-time is longer than the
iteration period Tr. Then, two registers are used at the time class J as shown in (b).

4-
Node a +

-**t
Node a +1

Nodeb - +

(a)

j j+Tr j+2Tr j+3Tr j+4Tr ^ t

 i...:i.|..:!..|..:^..L.:L.l..:!..
Nodeb "I ! +1 ! +3 ! +5 ! +7 [+9

I I I I I
(b)

Figure 6: Dividing time steps into groups and assignment of coefficients, (a) For nonover-
lapped scheduling, (b) For overlapped scheduling.

must use as many registers as the number of overlaps for storing any data. Therefore, to

count the number of registers precisely, the life-time of data must be checked to examine not

only whether it contains a particular time class but also how many times it contains that

time class.

In the technique to count the number of live data in [38, 33], time steps are divided at

time step j into two domains. For node a, the variables xaja are accumulated into (9) with

a coefficient +1 for ja < j — Ca and —1 for ja > j — Ca- For the immediate successor node

ba, the variables Xbajb are accumulated into (9) with a coefficient —1 for ji, < j and +1 for

jb > j- This is illustrated in Fig.6(a).

Time steps can also be divided into more than two domains if necessary. We divide time

steps at time class J, that is the time steps J + kTr for integers k, as illustrated in Fig.6(b).

Then, we associate the coefficient 1 — 2k to the variables xaja where J+(k — l)Tr — Ca < ja <

J+kTr—Ca and the coefficient — l+2k to the variables xbajb where J+(k—l)Tr < jb < J+kTr

and accumulate the variables to derive the following inequality

k~b I J+kTr-Ca J+kTr-l \

E £ E {-2k + l)xa,ja+ £ (2k-l)xbJb)<2MR, (11)
(a,6)eEo k=kab \Ja=J+(k-l)TT-Ca+l jb=J+(k-l)Tr J

21

where the upper and lower bound of k, kab and kab, respectively, are chosen so that every time

step in the scheduling ranges Ra and Rb for the edge (a, b) is included. They are calculated

as

kgb

kab

H mm

max •

LBa + Ca + J-

UBa + Ca + Tr-l- J

LBb + l-Tr + l-J

UBb + l-J
}■ (12)

(13)

For example, if the node a and its immediate successor node b are scheduled at the time

step between J — Ca and J + Tr — Ca and the time step between J + 3Tr and J + 4Tr,

respectively, the life-time of the data output by node a contains the time class J three times,

i.e., the time steps J + Tr, J + 2Tr, and J + 3Tr. In this case, the left-hand side of (11)

becomes 6, that is —1 for node a and +7 for node b. Therefore, the left-hand side of (11)

gives exactly twice the times the life-time contains the time class J.

Moreover in the overlapped scheduling, the number of delays on the edges are considered

in the precedence constraints. The number of registers depends on the number of delays. If

the number of delays on the edge e = (a, b) is We, then the data output by the computation

of node a is used by the node b after We iterations. In other words, the life-time of the data

contains a particular time class another We number of times. Therefore, the inequality (11)

is modified by taking the delays into account as follows:

22

kab I J+kTr-Ca J+kTT-l \

E E E (-2k + l)xa,ja+ £ (W + We)-l)xbdh)<2MR
(a,b)eE0 k=kab \ja=J+(k-l)Tr-Ca + l jb=J+(k-l)Tr)

VE0eEa,J = 0,l,...,Tr-l. (14)

The ILP model for the time assignment to minimize the total cost of processors and

registers is as follows. It minimizes the cost (15), subject to the constraints (5), (6), (7), and

(14).

Minimize COST = mM + mrMR (15)

where m and mr are the relative costs of a processor and a register.

2.2.2.4 Registers for Digit-Serial Data Architecture

Digit-serial architecture is used where the inexpensive bit-serial architecture is too slow

and the expensive bit-parallel architecture is faster than necessary [39, 40]. The number of

bits processed per cycle is referred to as the digit-size. The bit-serial architecture and the

bit-parallel architecture can be regarded as special cases of the digit-serial architectures for

digit-size equal to 1 and the word-length, respectively. In this section, the technique to count

the number of registers is extended for digit-serial architectures.

If the word-length is w bits and the digit-size is d bits, then one word of data consists of

w/d digits. We consider the case where w is a multiple of d. Let n denote the number of

digits in a word, i.e., n = w/d. If the first digit of a data is input to node a at time step

jo, then the second digit is input at j0 + l, and the last digit is input at j0 + n - 1. The

computation latency Ca of node a is the time difference from the input of z-th digit to the

output of z'-th digit for i = 0,1,..., n -1. Hence, in the case mentioned above, the first digit

of the output is available at time step j0 + Ca, the second digit is available at j0 + Ca + l,

and the last digit is available at j0 + Ca + n - 1.

A digit-serial register is the set of d 1-bit registers. One digit-serial register stores one

digit at a time. While storage of a bit-parallel data always requires one bit-parallel register,

the required number of digit-serial registers for storing digit-serial data varies from time

step to time step even in the non-overlapped schedule. Fig.7 shows the schedules of node

a and its immediate successor node b. We assume that n = 4, Ca = 2. The arrow in the

figure represents the life-time of a digit. For example, the life-time of the first digit of the

23

b\ I I T"

-t

fei i i r
(a) (b)

Figure 7: The number of live digits (n = 4, Ca = 2).

i—*
b\ i i r

(c)

data output by node a contains only the time step j in Fig.7(a) while the life-time of the

first digit of the data output by node a contains the time steps j - 3, j - 2,j - 1, and j in

Fig.7(b). In the schedule shown in Fig.7(a), only the life-time of the first digit contains the

time step j. Therefore, we need only one digit-serial register in this case. In the schedules

shown in Fig.7(b) and (c), the time step j are contained by all the digits and the 3rd and

4th digits, respectively. Therefore, we need 4 and 2 digit-serial registers in the schedules

shown in Fig.7(b) and (c), respectively. The inequality to count the number of live digits is

as follows:

• • • + 7xaJ-Ca-4 + 7x0j_Co_3 + 5xaj-ca-2
+ 3Xa,j-Ca-l + Xa,j-Ca ~ Xaj-Ca + 1 ~ ^a,j-Ca+2

-7xbtj_5 - 7xtj_4 - 5rr6j_3 - 3xbJ-2 ~ a?6j-i + xbJ + xbJ+1 • • • < 2MR. (16)

More generally, in the case of overlapped scheduling, the inequality to count the number

of live digits at the time class J = 0,1,..., Tr - 1 is

Kb

E E
(a,b)eE0 k=kab

■'OL—V

n-I„Tr-l

J2 i-lnk + 2p + 1 + 2(p + l)ln)xa,j+kTr-ca
p=0
Tr-1

+ £ (-2nk + 2(n-inTr)-l+2(p + l)in)xatJ+kTr_Ca.
p=n-lnTr

n-lnTr

+ Y, (Mk + We)-2p + l-2pln)xb,J+kTr_p
P=i

Tr-(n-l„Tr)-l

+ J2 (2n(k + We) + 1 + 2pln)xb,j+kTr+p
p=0

► < 2MÄ (17)

24

node a 1 l

node b

0 36 9
 ^

node a I

i \-~
■ j
1

node fe

(a) (b)

Figure 8: Examples of time assignment and life-time of digits (n = 5).

where
We = the number of delays on the edge e = (a, b)

n
T

r i n — 1

fca(, = max

kab = min

-E/ffa + Ca + Tr-l-J

Lßa + Ca — J

UBb + n-J-

LBb + n - Tr + I - J

Example: Fig.8 shows results of the time assignment of the nodes a and b for Tr = 3.

We assume that n = 5, Ca = 2, and We = 0. In the case of the time assignment shown in

Fig.8(a), node a and node b are assigned time steps —2 and 0, respectively. Two digit-serial

registers must be used at the time class 0 since the life-time of the first and the third digits

contain the time class 0. The first term of the left-hand side of (17) becomes 3 when k — 0

and p = 0 and the fourth term of the left-hand side of (17) becomes 1 when k = 0 and

p = 0. Therefore, in this case, the left-hand side of (17) is 4 which is equal to twice the

number of required registers. In Fig.8(b), node a and node b are assigned time steps 0 and

6, respectively. In this case, 7 digit-serial registers must be used at the time class 0 since

the time class 0 is contained twice at time step 3, 4 times at time step 6, and once at time

step 9. The first term of the left-hand side of (17) becomes —3 when k = 1 and p = 1 and

the third term of the left-hand side of (17) becomes 17 when k = 2 and p = 1. Therefore, in

this case, the left-hand side of (17) is 14 which is also equal to twice the number of required

registers.

To simplify notation, assume

Pi(k,p,n) = -Ink + 2p + 1 + 2(p + l)ln, (18)

25

P2(k,p,n) = -2nk + 2(n-lnTr)-l + 2(p+l)ln,

Pi(k,P,n) = 2n{k + We)-2p + l-2pln,

Pf{k,p,n) = 2n{k + We) + l + 2pln.

(19)

(20)

(21)

It is important to note that the following inequality

*o6

E E
(a,b)eE0 k-kab

} < 2MR, (22)

n-lnTr-l

J2 (Pi(k, P, n) - S)xajJ+kTr-ca-p
p=0
Tr-l

+ E (P2(k,P,n) - S)XatJ+kTT-Ca-p
p=n—lnTr
n-l„Tr

+ E (P£(k,P,n) + S)xb!j+kTT-p
p=l

Tr-(n-lnTr)-l

+ E (P4 (k> P> n) + S)Xb,J+kTT+p
p=0

where S is an arbitrary integer, can be used instead of the inequality (17) since -S for

variables xaj and +S for variables xbj cancel each other. This model is used in section 2.2.3.

2.2.3 Register Minimization in Architectures with Multiple Data Formats

Generally, slower processors are less expensive than faster processors. Therefore, using the

slower but less expensive processors for the computations which do not require fast execution

may result in a system with lower cost. A processor of one design style inputs data of

the format different from the output data of a processor of another design style. If the

output data of a bit-parallel processor is input to a bit-serial processor, we must use a data

format converter which converts data format from bit-parallel to bit-serial. Such data format

converter may be designed as described in [41]. In this section, we show the ILP model to

minimize the total cost of processors and converters. Then, the ILP model is extended to

minimize the total cost of processors, converters, and registers.

2.2.3.1 ILP Model for Processor Type Selection

We have developed an ILP model for the time assignment supporting the processor type

selection. In this ILP model, each node is assigned to a processor type chosen from the library

of processor types so that the total cost of processors is minimized without violating any

26

precedence constraints. Data format converters are automatically included in the synthesized

architecture when necessary.

Let LBl
v and UB%

V denote respectively the lower bound and the upper bound of the time

at which a converter of type v could start converting the data output from node i. These

are also determined by ASAP and ALAP scheduling results. Let Rl
v denote the scheduling

range [LBl
v, UBl

v]. We define R\, + k to denote the closed time interval [LBZ
V + k, UBl

v + k]

for any integers k.

The computation latency and the pipeline period are now specified for each processor

type t. If a node is assigned to a processor of type t, its computation latency is Ct and its

pipeline period is Lt.

The ILP model minimizes the cost (23), subject to the constraints (24)-(30). The fol-

lowing parameters are used in addition to those defined in section 2.2.1.

PROC is the library of available processors.

Fi denotes the subset of processors Fi C PROC, capable of executing node i £ N.

Ct is the computation latency of a processor of type t.

Lt is the pipeline period of a processor of type t.

mt is the cost a processor of type t.

Gt is the set of nodes which can be executed on a processor of type t.

Xijtt is a binary variable. rry)t = 1 means that node i starts at time step j on a processor of

type t.

FORM is the set of input and output formats for all the processors.

I(t) and 0(t) are respectively the input and output data formats of processor t.

CONV is the library of available converters.

vqr denotes a data format converter which converts data from format q to format r.

Cv is the conversion latency of a converter of type t.

Lv is the pipeline period of a converter of type t.

mv is the cost a converter of type t.

Vv is the set of nodes which could be assigned to a processor whose output format is the

same as the input data format of a converter of type v.

yij}V is a binary variable. y^^v — 1 means that a data format converter of type v is used and

27

the conversion for the output data of node i starts at time step j.

Mt and Mv are integer variables respectively indicating the number of processors of style t

and the number of converters of type v.

- - (23) Minimize COST = ^ mt-^t + E mvMv

tePROC veCONV

E E *w = i v< G N-
teFi j€Ri

(24)

E ya,;,>gr> E E ar«J«.*a+ E T, x<>db,tb-l Vq,reFORM,e = (a,b)eE. (25)
j'eÄ? to£Fa jaefl* t&eF6 jfiefy,

0{ta)=q I(tb)=r

E E
toGFa Ja=j-Ct0-C„0(to)|r+l

j-WeTr

a,ja,ta + ^ ^ xb,jb,tb S 1
tteFf, jb=LBb

I{tb)=r

(26)

Vr e FOAM, e = (a, ft) 6^6 (Ra + Cta + C„0(te)iPl - 1) n (Ä6 + WeTr).

£/Ba

E E xa,ja,ta +2^ 2^ J/oji.^n ^ 1 (27)
taeFa ja=j-Cta+l vqri J!=LB$

ri=r •qri

Vr e FOiüM, aeN,j e (Ra + minCto - 1) n (Ui?£)

"BVl j-WeTr

E E i/oji^r, + E E xbjb,tb < i (28)
"«»•l j'i=J-C«„ri+l
ri=r

t6eF6 jb=LBb
I{tb)=r

Vr € FOAM, e = (a, 6) £ E,j e (U(K + C„ - 1)) n (Ä„ + WeTr)

E E E ^t,J+fclTr-p,t +

l*K^J p=0

Lt-l

Tr
/ y ^IJl,* > <Mt (29)

VJ = 0,l,...,Tr-l,tePROC

E
iev„

E E Vi,J+kiTr-p,v +
p=0

Lv-1
E Vhjuv

heRi

> <M„ (30)

VJ = 0,l,...,Tr-l, D€ CONV.

The node assignment constraint (24) ensures that node % has one start time and is assigned

to one processor. The converter assignment constraint (25) ensures that a data format

converter of type vqr is used if node a is assigned to a processor whose output data format is

28

q and whose immediate successor node b is assigned to a processor whose input data format

is r.

In the precedence constraint from processor to processor (26), the data format conversion

time is taken into account. If an edge e = (a, b) exists, the computation of node b must start

at least Cta +CVo(ta) I(tb)—WeTr time step later than the computation of node a starts since the

computation of node a takes Cta time steps and the data format conversion takes CVo.ta) /(tt)

time steps. If 0(ta) = I(tb), no data format conversion is performed since CVrT = 0 for

r e FORM.

Inequalities (27) and (28) ensure the precedence constraints from processor to converter

and from converter to processor, respectively. In the case when the output format of the

converter and the input format of the processor are different, there is no need to constrain

the precedence relation between them. In that case, at least one of the terms on the left-hand

side of the inequality (28) is 0 and the inequality is automatically satisfied.

Inequalities (29) and (30) are used to count the number of processors and the number of

converters of each type.

2.2.3.2 Counting the Number of Registers During the Time Assignment

To calculate the cost of registers, we must know the exact number of registers, MRT , of each

data format r. Although it is possible to use part of a bit-parallel register as a bit-serial

register and vice versa, it would require complex control circuits. Therefore, we assume

that no 1-bit register is commonly used as part of registers of different data formats. That

is, bit-parallel registers are always used as bit-parallel registers and bit-serial registers are

always used as bit-serial registers. Henceforth, we will count the number of registers of each

data format separately and just sum them up with cost factors to calculate the total cost of

registers.

Registers of the data format r are used for the edge (a, b) in the cases where (i) node a

and node b are assigned to processors of data format r (as illustrated in Fig.9(a)), (ii) node

a is assigned to a processor of data format r, node b is assigned to a processor of data format

/ other than r, and the data format converter of type vrf is used to convert the data output

from node a (Fig.9(b)), or (iii) node a is assigned to a processor of data format q other than

29

a b a b a b

cy—o cy-o-o o-oo
(a)

converter

(b)

converter

(c)

Figure 9: Assignment of nodes to processor types.

r, node b is assigned to a processor of data format r, and the data format converter of type

vqr is used to convert the data output from node a (Fig.9(c)). There also exists a case where

no register of data format r is used for the edge (a, b). In that case, both the nodes a and

b are assigned to processors of data format other than r. Which case really occurs depends

on the processor type selection and cannot be known prior to solving the ILP model.

In the case where node b is the only immediate successor node of node a, at most one

converter of type vqr (for any q) is used if the node b is assigned to a processor of data format

r. The required number of format r registers for the output data of node a in the case where

node a has only one immediate successor node, MR(a,r, J), is calculated as

nr-l„rTr-l

X) (Pi(k,p,nr) -S*b)(^2 Xa,J+kTr-C,a-p,ta + Yly^+l'Tr-Cv<lt.1-p,vqr1)
P=0 ta6Fa «in

0(ta)=r ri=r

rP-i
+ X] (P2(k,P,nr) -S*b)(X Xa,J+kTr-Cta-p,ta + ^2 ya,J+kTr-C„qri-P,V<lri)

p=nr-lnrTr ta€Fa »Vi
0(ta)=r ri=r

nr-l„rTr

+ 5Z (P£(k>P>nr) + Sab)(^2 xbJ+kTr-P,tb + ^2 ya,J+(k+Wc)Tr-p,vri/)
P=l tb€Fb "i-i/

/(<t)=r ri=r

Tr-(nr-lnrTr)-l

+]C (^4 (fc>P>nr)+ ££(,)(Yl xb,J+kTr+p,tb + Y2 y^J+(k+We)Tr+p,vrif)
P=0 tb€Fb

vrif

(31)

2MR(a,r,J)= ^ <

where nr is the number of digits of data format r. The integer S£6 is chosen so that every

coefficient, P£(k,p,nr) + S£6 or Pf(k,p,nr) + Sr
ab, in the third and the fourth terms of the

right-hand side is positive. In that case, the coefficients Pi(k,p, nr)—S^b and P2(k,p, nr)—S£6

in the first and the second terms of the right-hand side may be positive, negative, or zero.

Hence, binary variables ya,j,vqr
maY unnecessarily become 1 to falsely reduce the value of

the right-hand side of (31) and give an incorrect number of registers. To prevent this, the

30

constraints

E E yaj,vqri + E E *..**. < i Vß e iv, (32)

E E VaJ,vnf < E E *MA V(a> b)^E (33)
<Vi jefl? «6GF6 jbeRb

are introduced so that variables ya,j,vqr do not unnecessarily become 1. Note that the con-

straints (32) and (33) do not eliminate any assignment possibility. If node a is assigned

to a processor of format r (the second term on the right-hand side of (32) is 1), then we

need not use a data format converter which converts the output data of node a into format

r. Moreover, if node b is assigned to a processor which does not input data of format r

(the right-hand side of (33) is 0), then we also need not use a data format converter which

converts data into format r. Therefore, these constraint may be satisfied in the case where

the converters are inserted properly.

On the other hand, in the case where node a has more than 1 immediate successor nodes,

we use another binary variables ga,j,r- It is important to note that the transitivity analysis is

of no use in the case of multiple data formats. It is because which immediate successor node

last uses the format r version of data can not be known until nodes are assigned to processor

types. Therefore, we introduce new variables ga^r rather than using very large number of

constraints for counting the number of registers. Although the number of variables would be

increased, the number of constraints is greatly decreased from HaeN sa * Tr to Tr for every

data format r eFORM.

The variable ga>jt1. = 1 means that the format r version of the output data of node a is

last used at time step j. If such format r version of data is not used, all the variables are 0.

To compute the value of ga,j,r, we use the following inequalities

Ei"Jw> E E0' + We)-zw,t6, VaeNme = (a,b)eE (34)
je«? tb€Fb jeRb

I(tb)=r

E 3 ' 9a,j,r > E E 3 • ya,j,vqri, VaeJVm (35)

Etfaj,r<l, VaeNm (36)

31

where iVm is the set of node with more than one immediate successor nodes and i?" is the

union of the scheduling ranges Ra and i?" r.

Then the required number of format r registers for the output data of node a in the case

where node a has more than one immediate successor nodes is calculated as

nr-f„.rr-i

2M'R{a,r,J)= £ <

53 (-Pl(fc'P'nr) ~ Sab)(Yl Xa,J+kTT~Cta-p,U + 'Y\iya,J+kTr.-Cvqr.l-p,vqri)
P=0 ta€Fa «Vj

0(t„)=r ri=r

Tr-1

+ ^2 (P2(fc,p,nr)-5^)(Y2 xa,J+kTr-Cta-p,ta+Yly^+l'Tr-CVqri-p,vqri)

p=nr-inrTr ta€Fa «in
0(ta)=r ri=r

nr-UrTr

+ Yl (P3(k>P>nr) + STab)9a,J+kTr-p,r
p=l

TP-(nP-/„rTr)-l

+]C (-P4(fc.P>nr) + 5';6)fla,j+fcri.+p,r
p=0

(37)

The integer Slb is chosen so that every coefficient, Pg(k,p,nr) + Slb or P%(k,p,nr) + 5„6,

in the third and the fourth terms of the right-hand side is positive. Thus, the coefficients

Pi(k,p,nr) — Slb and P2(k,p,nr) — S^ in the first and the second terms of the right-hand

side may be negative. We must use the constraints (32) and (33) so that converters are not

unnecessarily used.

The ILP model to synthesize the architecture with lowest cost of processors, converters,

and registers minimizes the cost (38), subject to the constraints (24)-(30), (32), (33), (34)-

(36), and (39). Here, Mr is the number of format r registers and mr is the relative cost of a

format r register.

Minimize COST= ^2 mtMt+ 5Z mvMv + J2 ™TMT (38)
tePROC veCONV reFORM

53 2MH(o, r,J)+ 53 2M'R(a, r, J) < 2Mr Vr G FORM, J = 0,1,..., Tr - 1. (39)
aeN-Nm aeNm

2.2.4 Experimental Result

In this experiment, the effectiveness of the ILP model to minimize the cost of registers as

well as the cost of processors and converters is confirmed. We use a DFG of a biquad filer

illustrated in Fig. 10.

32

Figure 10: A data flow graph of a biquad filter.

Table 7 shows a library of processor types. Each node in the DFG can be assigned to

one or more of the processors in the library. In Table 7, the computational latency, C, the

pipeline period, L, the input and output data format, / and O, and the cost, m, are shown

for each processor type. Processors Al and A2 represent two different adder implementations

while processors M3 and M4 represent two different multiplier implementations. Processors

Al and M3 input and output data of format bp and Processors A2 and M4 input and output

data of format hp. These formats bp and hp imply the bit-parallel and the half-word parallel,

respectively. The half-word parallel data format is the digit-serial where the digit-size is half

the wordlength. Therefore, half the bits of one word are processed at the same time and the

number of digits of one word of half-word parallel is two. For the DFG of the biquad filter

shown in Fig. 10, Nodes 1, 2, 3, and 4 can be assigned to either processor Al or processor

A2 in Table 7. Similarly, nodes 5, 6, 7, and 8 can be assigned to either processor M3 or M4

in Table 7.

Furthermore to support data format conversion, we include a library of data format

converters which convert between all possible data formats listed in the library of processors.

For example the library of processors in Table 7 requires two data format converters as shown

in Table 8. Each of the data format converters is classified according to its conversion type,

its conversion latency, C, its pipeline period, L, and its cost, m. The conversion latency of

the converter of type bp —» hp is 0 since the first digit of the converted data is available at

the time when the bit-parallel data is input to the converter.

We choose the costs of a register as rribp — 2 and rrihp — 1.

33

Table 7: Processor specifications Table 8: Data format converter specifica-
tions

type C L I 0 m
Al 1 1 bp bp 10
A2 1 2 hp hp 5
M3 2 2 bp bp 50
M4 3 3 hp hp 25

type conversion C L m

Vhp,bp bp —>• hp 0 1 1

Vbp,hp hp —> bp 1 1 1

nhp

bp
»f *t

bp

&-&m

•o3

^^ä^©
U@?

w

o ;
■ i i

\

£

c
i ^

5 2 2 3
6 1 1 4

8 7

8-

3_

1-
1

5-
2-
►7" ►4- ►

bp
6-

hp

3

2_

3

1

(b)

Figure 11: Time assignment result by the complete ILP model, (a) The assignment of nodes
to processor types, (b) Time chart of the time assignment and life-time of data.

Fig. 11 shows a time assignment result for the iteration period Tr = 3 obtained by solving

the complete ILP model with register minimization. Fig.ll(a) shows the assignment between

nodes and processors and inserted converters. A white node means it is assigned to either

an Al adder or an M3 multiplier. A dotted node means it is assigned to either an A2 adder

or an M4 multiplier. Boxes are then inserted to represent data format converters. The time

chart of the node computations and data format conversions and the life-time of data are

illustrated in Fig. 11(b). In this figure, a box represents either a computation of node or a

data format conversion. An arrow represents the life-time of a data in the case of format bp

or a digit in the case of format hp. For example, the computation of node 5 starts at time

step 3 and its result is output at time step 5 since the computation latency of M3 multiplier

is 2. That result is stored in a register of format bp at the time step 5 and used by the

computation of node 2 at time step 5. A data format conversion of the type bp —>• hp for

the output data of node 2 (represented by a half shaded box with '2' inside) is executed at

time step 6. The first digit of the converted data is output immediately at time step 6 and

used by node 6. The second half of the data is stored in the converter and output as the

34

0 c
1 1 1

\ 6
i i i i

c

5 2 2 3
6 6 1 4 4

8 7

8-

3

1_

1-
5-
►2-
►7" ►4- ►

bp
6-

hp

2

1

4_

0

(b)

Figure 12: Time assignment result with ILP model division, (a) The assignment of nodes to
processor types, (b) Time chart of the time assignment and life-time of data.

second digit at at time step 7. Then it is input by node 6. In this case, 1 Al adder, 1 A2

adder, 2 M3 multiplied, 1 M4 multipliers, 1 bp ->■ hp converter, and 1 hp ->■ bp converter, 3

bp registers, and 2 hp registers are used in this architecture of the lowest cost of 150.

Fig. 12 shows a time assignment result for the iteration period Tr = 3 obtained by solving

the divided ILP models. In this case, the cost of processors and converters is the same as

the result by the complete model. However, we need 4 bp registers and 1 hp register and the

total cost is 151. This cost is one unit of cost higher than the optimal result obtained by the

complete ILP model. This is because the assignment of nodes to processor types is fixed as

obtained by the second ILP model and there is no chance to alter the assignment while the

cost of regisers is precisely calculated and minimized by the third ILP model.

Table 9 compares the complete ILP model and the divided ILP models. Table 9 shows

the number of constraints (eqn) and the number of variables (var) in the ILP model, the cost

of synthesized architecture, and the CPU time to solve the ILP model. The CPU times are

measured by the ILP solver GAMS/OSL [42] running on a SparcStation 20. While the CPU

time to solve the complete ILP model is 134 seconds, the total CPU time for the divided

ILP models is only 5.5 seconds. Thus, the divided ILP models save much CPU time at the

expense of 0.7% increase in the cost of synthesized architecture.

For more practical results, we have synthesized architectures for some benchmark data-

flow graphs. In this case, we assume the library of processors and the library of converters

as shown in Tables 10 and 11. We also assume that arithmetic is in fixed point and the

35

Table 9: The ILP Models for the Biquad Filter Synthesis
Model eqn var Cost CPU [sec]

complete 374 231 150 134.06
first 65 72 142 2.80
second 81 84 150 2.23
third 81 69 151 0.47

Table 10: Library of Processor Types (wordlength = 16)
type processor C L m / 0

■A-bp Bit-parallel adder 1 1 53 bp bp
■A-hp Half-word parallel adder 1 2 19 hp hp
Ads 4-bit digit-serial adder 1 4 6 ds ds
Mbp Bit-parallel multiplier 5 1 331 bp bp
Mhp Half-word parallel multiplier 6 2 173 hp hp
Mds 4-bit digit-serial multiplier 9 5 86 ds ds

wordlength is 16 bits. The format ds implies the 4-bit digit-serial where the digit size is 4

bits. Table 12 shows the specification of the register of each data format. In this table n is

the number of digits of one word and m is the cost of one register of each data format.

Table 13 shows; the data-flow graph; the specified iteration period Tr; the model; the

number of constraints and the number of varibles of the ILP model; CPU time in seconds to

solve the ILP model; the lowest cost architecture; the number of registers; and the total cost.

The ILP models are solve by the ILP solver GAMS/OSL running on a SparcStation 2. For

example, in the case of the 4th order lattice filter with TT = 14, the second ILP model is not

used. This is because only one type of processor is used for each operation type (addition

or multiplication) and therefore the assignment of node computations to processor types is

Table 11: Converter Types
type conversion C L m

Vbp,hp bp^hp 0 1 3
vbp,ds bp-tds 0 3 4
vhp,bp hp^bp 1 1 3
Vhp,ds hp^ds 0 2 3
Vds,bp ds-^bp 3 3 4
Vds,hp ds-^-hp 2 2 3

Table 12: Registers
fmt n m
bp
hp
ds

1
2
4

8
4
2

36

Table U !: Time Assignment Benchmarks
DFG TT Mdl eqn var CPU Lowest cost architecture reg Cost

4th Order 14 1st 49 47 0.82 3Abp, 2Mhp 821
Lattice 3rd 41 28 0.86 2Abp, Mbp 5i?6p 861
Filter 15 1st 138 84 2.14 2Abp, Mbp 437

3rd 119 114 2.26 2Abp, Mbp 5Rbp 477
16 1st 212 129 14.1 Abp, Ahp, Mbp, Vbp^hpi vhp,bp 409

2nd 207 130 17.7 Abp, Afrp, Mbp, Vbpthp> ^hp,bp 5Rbp 449
3rd 235 146 5.74 Abp, Ahp, Mbp, 4Vbp,hpi vhp,bp Oxlbp, othhp 448

17 1st 310 181 17.6 AbP, Mbp 437
3rd 163 114 17.0 Abp, Mbp 6Rbp 432

18 1st 276 154 5.96 Ahp, Ads, Mfrp, Vhp,ds, vds,hp 223
2nd 206 122 4.37 A-hpi Ads, Mhp, Vhp,ds, Vds,hp 9Rhp 259
3rd 225 130 1.24 Ahpi A^s, Mfip, Vhp,ds, Vds,hp 7Rhp, 4Rds 259

5th Order 25 1st 243 167 2.02 SAbp, Mbp 490
Elliptic 3rd 141 113 1.39 3Abp, Mbp 9Rbp 562
Wave Filter 26 1st 415 249 24.4 2Abp, Mbp 437

3rd 185 142 2.47 2Abp, Mbp 9RbP 509
27 1st 586 326 651 Abp, Ahp, Mbp, Vbp^hpi vhp,bp 428

2nd 452 288 806 Abp, Ahp, Mbp, Vbp,hpi vhp,bp 9Rbp 500
3rd 494 367 13.0 Abp, Ahp, Mbp, iVbp^hpt Vhp,bp 6Rbp, 5RhP 499

4th Order 16 1st 346 291 9.53 2Abp, Mbp 437
Jaumann 3rd 232 154 4.32 2Abp, Mbp 6i?6p 485
Filter 17 1st 417 327 13.5 Abp, Mbp 384

3rd 254 172 7.45 Abp, Mbp 6Rbp 432
18 1st 451 362 24.3 Abp, Mbp 384

3rd 276 190 12.9 Abp, Mbp 6Rbp 432
17 1st 305 262 7.12 2Ahp, Mhp 211

3rd 291 191 5.92 2Ahp, Mhp ISRhp 263
18 1st 348 291 .17.0 2Ahp, Mhp 211

3rd 314 209 200 2Ahv, Mhp ISRhp 263
4-stage 3 1st 146 145 5.55 2Abp, 7Ads, 5Mbp, VbP,ds 1807
Pipelined 2nd 254 133 1710 2Abp, 8Ads, 5Mftp, VbPtds 13Rbp 1917
Lattice 3rd 229 135 5.74 2Abp, 8Ads, 5Mbp, 7vbp,ds 11 Rbp, 8Rds 1941
Filter 4 1st 215 210 4.42 Ahp, 9Ads, ^Mbp, Vbp,hp, Vbp,ds, Vhp,bp, Vds,bp 1411

2nd 373 178 4359 Ahp, 9Ads, ^Mbp, Vbp>hp, Vbp,ds, VhP,bp, Vds,bP l2Rbp 1513
3rd 437 230 55.7 Ahp, 9Ads, 4M(,P, 2vbp,hp, 6vbp,ds, VhP,bp, Vds,bp 8Rbp, 2Rhp, 8Rds 1528

5 1st 238 261 14.8 9Ads, 3M(,P, VbPids, Vds,bp 1055
3rd 534 276 312 9Abp, 2>Mbp, 9vbPtds, Vds.bp QRbp, 24Rds 1187

16 Point 1 1st 96 64 1.09 6QAds, 8Mbp, Vbp,ds, Vds,bP 3016
Fir Filter 3rd 134 84 0.72 60Ads, 8Mbp, 24vbPtds, 24vds,bP 8Rbp, 56Rds 3376

2 1st 100 117 1.12 30Ads, 4Mfcp, Vbp,ds, Vds,bp 1508
3rd 188 120 2.71 30^, 4Mbp, I2vbp,ds, 12vds,bP 4Rbp, 30i?ds 1692

3 1st 104 170 1.82 20,4,^, 3M(,P, Vbp,da, Vds,bp 1121
3rd 248 160 38.0 20Ads, 3Mtp, 8vbp,d$, 8vds,bp 3Rbp, 22Rds 1245

37

obvious. Thus, we immediately generate the third ILP model based on the result of the first

ILP model. The same applies to other cases where the second ILP model is missing.

3 Other High-Level Tools

We have also developed other tools and methodologies during our pursuit of solutions to

the high-level synthesis problem and in developing efficient architectures. In this section we

present these new results.

3.1 Determination of Minimum Iteration Period

DSP algorithms are repetitive in nature and can be easily described by iterative data-flow

graphs (DFGs) where nodes represent tasks and edges represent communication [43, 44].

Execution of all nodes of the DFG once completes an iteration. Successive iterations of

any node are executed with a time displacement referred to as the iteration period. For all

recursive signal processing algorithms, there exists an inherent fundamental lower bound

on the iteration period referred to as the iteration period bound or simply the iteration

bound [45, 46, 47]. This bound is fundamental to an algorithm and is independent of the

implementation architecture. In other words, it is impossible to achieve an iteration period

less than the bound even when infinite processors are available to execute the recursive

algorithm.

Determination of the iteration bound of the data-flow graph is an important problem.

First it discourages the designer to attempt to design an architecture with an iteration period

less than the iteration bound. Second, the iteration bound needs to be determined in rate-

optimal scheduling of iterative data-flow graphs. A schedule is said to be rate-optimal if

the iteration period is same as the iteration bound, i.e., the schedule achieves the highest

possible rate of operation of the algorithm.

Two algorithms have been recently proposed to determine the iteration bound. A method

based on the negative cycle detection was reported in [48] to determine the iteration bound

with polynomial time complexity with respect to the number of nodes in the processing

algorithm. Another method based on the first-order longest path matrix was proposed

38

Input: DFG G=(N,E,q,d).
Output: The iteration bound Tj.
1. Construct the graph Gd = (D, Ed, to) from the given DFG G = (N, E, q, d).
2. Run the minimum cycle mean algorithm on Gd-

Minimum cycle mean algorithm
2.0 Choose one node s G D arbitrarily.
2.1 Calculate the minimum weight Fk(v) of an edge progression

of length k from s to v as
Fk(v)= min {Ffc_i(u) + ü)(u,v)} for k = 1,2,..., \D\

(u,v)€Ed

with the initial conditions FQ(S) = 0; Fo(v) = oo, v ^ s.
2.2 Calculate the minimum cycle mean A of Gd-

Fm{v)-Fh{v)
A = mm max . _. ;

v£DQ<k<\D\-l \D\ — k
3. Now, Ti = -A is the iteration bound of the DFG G.

Figure 13: The algorithm to determine the iteration bound.

in [49] to determine the lower bound with polynomial time complexity with respect to the

number of delays in the processing algorithm. In this section, we propose yet another method

based on the minimum cycle mean algorithm to determine the iteration bound with lower

polynomial time complexity than in [48] and [49].

3.1.1 A New Algorithm to Determine the Iteration Bound

In this section, we describe an algorithm that determines the iteration bound by using the

minimum cycle mean algorithm. The cycle mean of a cycle c, ra(c), is defined as

m(c) = EeecU;(e) (40)
Pc

where w(e) is the weight of the edge e and pc is the number of edges in cycle c. In other

words, the cycle mean of a cycle c is average weight of the edges included in c.

The minimum cycle mean problem involves the determination of the minimum cycle

mean, A, of all the cycles in the given digraph where

A = min ra(c). (41)

An efficient algorithm was proposed in [50] to determine the minimum cycle mean for a given

graph with time complexity ö(|iV||JE'|), where N and E are the set of nodes and the set of

edges of the graph, respectively.

39

(2)W (2)W Dß w(1)

(a) (b)

Figure 14: The cycle mean and the cycle bound.

The number of nodes in a cycle is equal to the number of edges of the cycle. According

to the definition of the graph Gd = (D, Ed, w), each node in Gd corresponds to a delay in the

DFG, G, and the edge weight w(di, d2) of the edge (di, d2) G Ed is the largest weight among

all the paths from the delay d\ to the delay d2. Therefore, the cycle mean of the cycle Q,

containing k nodes, di, d2, ■ ■., dk, is the maximum cycle bound of the cycles of G, which

contain the delays labeled d\, d2, -■-, dk- For example, in the graph shown in Fig.l4(a),

there are two delays labeled a and ß, respectively. There exist two cycles {(/, k), (k, i), (i, I)}

and {(/, k), (k,j), (j, i), (i, I)}, both of which go through delays a and ß. Their cycle bounds

are 4/2 = 2 and 6/2 = 3, respectively, and the maximum of them is 3. Fig. 14(b) shows

the graph Gd = (D,Ed,w) corresponding to the graph shown in Fig.l4(a). In Fig.l4(b),

D = {a,ß}, w(a,ß) = 1, and w(ß,a) = 5. There exists one cycle {(a,ß), (ß,a)} and its

cycle mean is 3. It equals the maximum cycle bound of the cycles in the graph shown in

Fig. 14(a), which contain the delays a and ß.

Since the cycle mean of a cycle c in the graph Gd equals the maximum cycle bound of the

cycles in G which contain the delays in cycle c, the maximum cycle mean of the graph Gd

equals the maximum cycle bound of all the cycles in the graph G. Therefore, the iteration

bound of the graph G can be obtained as the maximum cycle mean of the graph Gd-

Let Cd denote the set of cycles in graph Gd- Then, the maximum cycle mean of the graph

Gd is

max mlc) = max—E
cecd cecd pc

-Eeec(-w(e))
= max ^ L-^

cecd pc

40

(2)

G=(N,E,q,d)

N={h,i,j,k,l,m}

(a)

Gd=(D,Ed,w)
D=(a#,y,8)

(b)

Gd=(D,Ed,w)

D=(a$,y,5)

(c)

Figure 15: The DFG G and the corresponding edge-weighted digraph Gd- In parenthesis in
G are the computation times of nodes.

miKEeec(-^(e))
cecd pc

(42)

It is the negative of the minimum cycle mean of the graph Gd — (D, Ed, w), where w(e) =

—w(e) for every edge e G Ed- Consequently, the maximum cycle mean of the graph Gd, i.e.,

the iteration bound of the graph G, can be obtained as the negative of the minimum cycle

mean of the graph Gd-

The algorithm to determine the iteration bound of the given graph by means of the

minimum cycle mean is summarized in Fig. 13.

From the DFG G = (N,E,q,d), constructing Gd = (D,Ed,w) and Gd = (D,Ed,w)

requires the computation time of 0(|.D||i?|) complexity. The time complexity to calculate

the minimum cycle mean for the graph Gd = (D, Ed, w) is C?(|.D||.Etf|). Hence, the total time

complexity to determine the iteration bound isC?(|JD||J5d| + |D||jE|). This time complexity is

better than the ö(|D|3log|D| + |-D||.E|) complexity of the other methods since \Ed\ < \D\2

and therefore \Ed\ < |£>|2log|D| always hold. The memory requirement for calculating the

edge weight w and determining the minimum cycle mean for the graph Gd are C?(|iV|) and

0(|.D|2), respectively. The total memory requirement is 0(\N\ + \D\2).

Example. From the given DFG G illustrated in Fig.l5(a), the edge-weighted digraph Gd

and Gd are constructed as shown in Fig.15(b) and (c), respectively. If we choose a as s

41

Table 14: Comparison of Iteration Bound Determination Algorithms
Method Time complexity Memory requirement CPU [mS]

EWF PLF
NCD 0(\N\\E\\og\N\) 0(\N\ + \E\) 25.2° 1.00c

LPM 0(\D\\E\ + \D\') Ö(\N\ + \D\2) 1.926 2.97d

LPM' ö(|D||£| + |D|3log|D|) 0(\N\ + \D\2) 3.58° 6.38c

MCM 0(\D\\E\ + \D\\Ed\) 0(\N\ + \D\2) 0.7176 0.650d

"the obtained iteration bound = 16.0002594 cthe obtained iteration bound = 1.50439453
6the obtained iteration bound = 16.0000000 dthe obtained iteration bound = 1.50000000

used in the minimum cycle mean algorithm, Fk(v), the minimum weight of paths consisting

of exactly k edges in Ed, and max0<fc<|D|_i |p|p,~fc are calculated as follows: Then,

Fk(v) 0 1 2 3 4 max
0<Jfc<3

F4(v)-Fk(v)
4-k

a 0 -3 -7 -10 -14 -3.5

ß OO -7 -11 -14 -18 -3.5

7 OO OO -7 -11 -14 -3
5 CO -6 -9 -13 -16 -3

(43)

A = min.yeD max0<fc<|o|_i |D|,ß,~fc = —3.5 and the iteration bound of the DFG G is 3.5.

The reader may confirm that the critical cycle is {(h, j), (j, I), (I, m), (m, k), (k, h)} and its

cycle bound, that is the iteration bound of the DFG, is 3.5 since the sum of computation

times of nodes h,j,l,m,k is 7, the critical cycle contains 2 delays labeled as a and S, and

7/2 = 3.5.

3.1.2 Experimental Results

The CPU time to determine the iteration bound for practical DFGs are compared. We chose

the 5th order elliptic wave filter (EWF) [51] and the recursive part of the 4-level pipelined

lattice filter (PLF) [52] as benchmarks. EWF which consists of 34 nodes, 56 edges, and 7

delays and the number of delays, |D|, is relatively smaller than the number of nodes, \N\,

and the number of edges, \E\. On the other hand, PLF which consists of 8 nodes, 10 edges,

and 8 delays and \D\ is comparable to |iV| and \E\.

Table 14 shows the comparison of time complexity, memory requirement, and CPU time

to determine each iteration bound of EWF and PLF. In this table, NCD is the negative cycle

42

detection method by using Bellman-Ford shortest path algorithm to detect negative cycles,

LPM is the longest path matrix method, LPM' is the mixture of LPM and NCD methods

by using Floyd shortest path algorithm to detect negative cycles, and MCM is the minimum

cycle mean based method. The computation time of node i, q(i), is assumed 1 if node i is

an addition or 2 if it is a multiplication. All the CPU times are measured on a SparcStation

2 and do not include the time consumed in reading the DFG from a file.

In NCD and LPM' methods, the calculation of the iteration bound is terminated when the

difference between successive guess iteration bounds becomes smaller than l/|iV|272 where

| AT | is the number of nodes in the DFG and 7 is the longest computation time of nodes [53].

While LPM and MCM derive the exact iteration bound, NCD and LPM' derive only an

approximate iteration bound. Some post-calculations may be necessary to identify the exact

iteration bound from the approximate.

3.2 Exhaustive Scheduling and Retiming

Time scheduling and retiming are important tools used to map behavioral descriptions of

algorithms to physical realizations. These tools are used during the design of software for

programmable digital signal processors (DSPs), during high-level synthesis of applications-

specific integrated circuits (ASICs), and during the design of reconfigurable hardware such

as field-programmable gate arrays (FPGAs). Time scheduling and retiming operate directly

on a behavioral description of the algorithm, such as a data-flow graph (DFG). Since the

decisions made at the algorithmic level tend to have greater impact on the design than those

made at lower levels, the importance of time scheduling and retiming cannot be overstated.

Our contributions in [54] and [55] present new formulations of the time scheduling and

retiming problems, and based on these formulations, new techniques are developed to deter-

mine the solutions to these problems. These formulations are valid for strongly connected

(SC) graphs, where a strongly connected graph has a path u ~~> v and a path v ~» u for every

pair of nodes u, v in the graph. We focus on strongly connected graphs because these graphs

traditionally present the greatest challenges when they are mapped to physical realizations

due to the feedback present in the graphs.

Retiming consists of moving delays around in a DFG without changing its functionality.

43

As with scheduling, there is a huge body of literature on retiming, and new applications

for retiming are constantly being found. For example, due to the recent demand for low-

power digital circuits in portable devices, some recent work has focused on retiming for

power minimization [56]. The groundbreaking paper on retiming [57] describes algorithms

for tasks such as retiming to minimize the clock period and retiming to minimize the number

of registers (states) in the retimed circuit. An approach to retiming which is based on circuit

theory can be used to generate all retiming solutions for a DFG [58]. This approach was

the motivation for our work on exhaustive scheduling. In [55], we show that retiming is a

special case of scheduling, and consequently, the formulation of the scheduling problem and

the techniques for exhaustively generating the scheduling solutions can also be applied to

retiming.

The impact of the formulations derived in this work are as follows.

• The interaction between retiming and scheduling is important [59], and our formula-

tions give a simple way to observe this interaction.

• We show that retiming is a special case of scheduling.

• We give solid mathematical descriptions of the scheduling and retiming problems in a

common framework.

• We develop techniques for generating all solutions to a particular scheduling or retiming

problem. This allows a developer the ability to search the design space for the best

solution, particularly when various parameters are difficult to model and include in a

cost function. This has applications to software design, ASIC design, and design for

reconfigurable hardware implementations.

• Our formulations provide for a better understanding of scheduling and retiming which

can be used to develop new heuristics for these problems.

The exhaustive scheduling technique is demonstrated using the fifth-order wave digital

elliptic filter shown in Fig. 16. We assume that addition and multiplication require 1 and 2

units of time, respectively, and that hardware adders and multipliers are pipelined by 1 and 2

44

'' p \

' 29 ,','

''-»©<''
(X)3l\

y^--—®io
TD
A24

23(+)-Kx)-H

'if
D,

OUT

Figure 16: The fifth-order wave digital elliptic filter. The solid lines show a spanning tree
used by the exhaustive scheduling algorithm.

Table 15: The results of exhaustively scheduling the filter in Fig. 16.

iter period # sched solutions CPU time (sec)
16
17
18

9900
4669095

580432280

0.0342
16.2
2020

stages, respectively. The results of exhaustively generating the scheduling solutions without

considering resource constraints are shown in Table 15. The results of exhaustively generating

the scheduling solutions which can be implemented on a given number of hardware adders

and multipliers are shown on the left side of Table 16. From these tables, we can see that the

time it takes to exhaustively generate only the scheduling solutions which satisfy a given set

of resource constraints is orders of magnitude faster than the time it takes to exhaustively

generate all scheduling solutions. The expressions in [60] can be used to compute the number

of registers required by a given schedule. The results of this are shown on the right side of

Table 16. Note that these results assume that internal pipelining registers cannot be shared

between processors, while the results in [60] assume that internal pipelining registers can be

shared between processors.

3.3 Two-Dimensional Retiming

Two-dimensional retiming [61, 62] is used to retime data-flow graphs (DFGs) which oper-

ate on two-dimensional signals such as images. As digital image processing becomes more

45

Table 16: The results of exhaustively scheduling the filter in Fig. 16 for a given set of
resource constraints. The left part of the table considers scheduling to the minimum possible
number of adders and multipliers for the given iteration period, and the right part considers
scheduling to the minimum number of adders, multipliers, and registers.
iter

period
resources # sched solns

CPU time
(sec)

16 3 add, 1 mult 77 0.00288
17 2 add, 1 mult 98 0.0518
18 2 add, 1 mult 131983 11.1
19 2 add, 1 mult 33948842 1700

resources # sched solns

3 add, 1 mult, 7 reg 21
2 add, 1 mult, 7 reg 73
2 add, 1 mult, 7 reg 40723
2 add, 1 mult, 7 reg 3056246

popular in multimedia applications, the need for high speed, low area, and low power imple-

mentations of multidimensional digital signal processing (DSP) algorithms increases. Like

one-dimensional retiming [57], two-dimensional retiming can be used to increase the sample

rate, reduce the area, and reduce the power consumed by a synchronous circuit.

In [63], we present two techniques for retiming two-dimensional data-flow graphs (2DFGs).

Each of these techniques minimizes the amount of memory required to implement the 2DFG

under a clock period constraint. The first technique, called ILP 2-D retiming, is based on an

integer linear programming (ILP) formulation which considers the 2-D retiming formulation

as a whole. While this technique gives excellent results, it has slow convergence for large

2DFGs. The second technique, called orthogonal 2-D retiming, is formulated by breaking

ILP 2-D retiming into two linear programming problems, where each problem can be solved

in polynomial time. The downfall of orthogonal 2-D retiming is that the results of the two

linear programming problems can sometimes be incompatible. A variation of orthogonal 2-D

retiming called integer orthogonal 2-D retiming is also based on a linear programming for-

mulation, and this technique solves the incompatibility problem which may be encountered

using orthogonal 2-D retiming. The techniques presented in this paper result in retimed

2DFGs which require less memory than than the technique in [62] and are compatible with

considerably more processing orders of the data than the technique described in [61].

46

Architectures

4 Discrete Wavelet Transforms

The discrete wavelet transform (DWT) has generated a great deal of interest recently due

to its many applications across several disciplines, including signal processing [64], [65],

[66], [67], [68]. Wavelets provide a time-scale representation of signals as an alternative

to traditional time-frequency representations. Our work on wavelets includes the design

of efficient DWT architectures and the development of methodologies for designing these

architectures.

Several architectures for the 1-D DWT have been proposed in the past; [69] contains

a survey of these architectures. For the most part, these architectures have been designed

using ad hoc design methods because the focus has been on the architectures and not the

methodologies used to design them. In our work, we are concerned with developing design

methodologies which can be used to design wavelet architectures. Using these methodologies,

a wavelet architecture can be designed to meet the specifications of a given application.

Our work focuses mainly on the design of folded [70] architectures for the DWT, al-

though we also consider digit-serial [71] architectures as well. Folded DWT architectures are

appealing because they lead to single-chip implementations which can be pipelined for high-

throughput or low-power applications. The basic idea behind the folded architectures is to

time-multiplex filtering operations performed at various rates in the algorithm description to

a small number of hardware filters [72], [73], [74]. The folded hardware is clocked at the same

rate as the input data, resulting in a single-rate implementation of a multirate algorithm.

Detailed folded DWT architectures based on direct-form FIR filter structures were derived

in [73]. Our work presents a systematic technique for constructing folded architectures for

the DWT.

In the area of designing DWT architectures, our contributions are as follows:

• The development of a novel multirate folding transformation [75], [76] which can be used

to systematically fold the multirate DWT algorithm to single-rate DSP architectures.

• The development of register minimization techniques which can be used to compute

47

the minimum number of registers required to implement single-rate [60] and multirate

[76] DSP algorithms.

• The design of efficient lattice-based architectures for the orthonormal DWT [77], [78],

[79], [76].

• A systematic technique for generating architectures for tree-structured filter banks [75].

These contributions are described in detail in the following sections.

4.1 Multirate Folding

Multirate folding [75], [76] is a technique for systematically synthesizing control circuits

for single-rate architectures which implement multirate algorithms. The term single-rate

architecture is used to describe a synchronous architecture where the entire architecture

operates with the same clock period. A direct mapping of a multirate DSP algorithm to

hardware would require data to move at different rates on the chip. This would require

routing and synchronization of multiple clock signals on the chip. To avoid these problems,

we concentrate on mapping the multirate DSP programs to single-rate VLSI architectures.

The advantages of multirate folding fall into two broad categories. The first advantage

is that the multirate folding equations can be used to systematically determine the control

circuitry for the architecture from a scheduled DFG. The second advantage, which is slightly

more subtle, is that this formal approach can be used to address other related problems

in high-level synthesis in a formal manner. Two such problems, memory minimization and

retiming [57], are considered. Using the multirate folding equations, we derive expressions

for the minimum number of registers required to implement the architectures, and we derive

constraints for retiming the circuit such that a given schedule is valid.

The properties of multirate folding, which are described in detail in [76], are summarized

below:

• Multirate folding is a novel technique for synthesizing control circuits for single-rate

architectures which implement multirate DSP algorithms.

48

• The multirate folding equations allow us to address other problems in high-level syn-

thesis, such as memory minimization and retiming.

• Multirate folding operates directly on the multirate DFG, avoiding the step of first

constructing an equivalent single-rate algorithm description.

• Multirate folding accounts for pipelining, so architectures can be designed for high

speed and low power [80] applications.

• Multirate folding is applicable to a wide variety of DSP algorithms. We demonstrate

its utility by designing a discrete wavelet transform architecture in [76].

4.2 Register Minimization

In [60] and [76], expressions are derived for computing the minimum number of registers

required to implement statically scheduled single-rate and multirate DSP programs.

We describe the problem using an example. After the DFG has been scheduled, speci-

fications for the communication paths between hardware modules can be determined using

systematic folding techniques [70]. Consider the multiply-add operation in Fig. 17(a), which

is an algorithm DFG describing y(n) = au(n) + v(n). Assume this multiply-add is part of a

larger DFG which is to be implemented in hardware with an iteration period of 10, i.e., each

node in the algorithm DFG will be executed by the hardware exactly once every 10 time

units. If the multiply operation is executed by one-stage pipelined hardware module HM at

time units 10/ + 2, and the add operation is executed by hardware module HA at 10Z + 8 for

integer I iterations, then the connection between the multiplication and addition operations

in Fig. 17(a) is mapped to the data path in Fig. 17(b). Upon examination of Fig. 17(b), one

observes that at any given time, no more than one of the five delays labeled "5D" between

HM and HA is storing a word of data that will actually be consumed by HA- To avoid the

inefficient architecture that would result from direct implementation of Fig. 17(b) in sili-

con, memory management is used in high-level synthesis tools to derive efficient data paths

between processing modules.

Memory management consists of choosing the type of registers, number of registers,

and allocation of data to these registers. The type of registers is usually dictated by the

49

v(n)^0^y(n)
(a)

(fii^-»|~ET-H5D

10/+8

X
*-@

(b)

Figure 17: (a) Algorithm DFG describing y(n) = au(n) + v(n). (b) Data path specification
derived from the algorithm DFG for an iteration period of 10.

architecture model used. In [60], we compute the minimum number of registers required

for a statically scheduled DFG under various memory models. The allocation of the data

to registers is an NP-complete problem for which heuristic algorithms have been suggested

[81, 82, 83].

We use life-time analysis to derive closed-form expressions for the minimum number of

registers required by a statically scheduled DSP program. These techniques offer several

advantages over previously used techniques. First, the closed-form expressions can be used

to represent cost functions for high-level synthesis optimization tools. An example of using

these closed-form expressions in an integer linear programming (ILP) formulation is given

in [60]. Second, the analytical tools we introduce can be used to derive expressions for the

minimum number of registers under a variety of memory models which describe how data

can be allocated to memory. This is important because the target architecture may impose

constraints on how data can be routed to memory. We derive expressions for three memory

models, namely the operation-constrained, processor-constrained, and unconstrained memory

models. For the unconstrained memory model, where all memory-sharing constraints are

relaxed, the minimum number of registers required to implement a DFG with m nodes

can be computed in 0(m2) time. A third advantage of the analytical tools we introduce

is that they can be used to determine memory requirements for more complex algorithm

descriptions, such as DFGs which have multiplexers in the data paths.

50

Pipelining and retiming [57] are powerful tools used in high-level synthesis. Pipelining can

be considered to be a special case of retiming. We consider an integer linear programming

solution to the retiming problem, referred to as the minimum physical storage location

(MPSL) retiming, which retimes a scheduled DFG such that its memory requirements are

minimized under the unconstrained memory model while the schedule remains valid for the

retimed DFG. We use MPSL retiming to retime a DFG which has been scheduled using the

MARS design system [84], and we compare the memory requirements of MARS to a globally

optimal solution. Our results show that the MARS system gives optimal or close-to-optimal

results in terms of memory requirements.

The results we present can be used throughout the high-level synthesis process. Expres-

sions for the minimum number of registers can be used during scheduling to help determine

the total cost of the architecture. After scheduling, MPSL retiming can be used to opti-

mally retime a DFG in terms of registers required for its implementation. During memory

management, our techniques can be used to optimize the hardware design in terms of the

number of registers required. For instance, given the scheduled DFG and the desired memory

model, the minimum number of registers required can be determined, and register allocation

can be performed by an appropriate register allocation scheme which guarantees completion

(e.g., forward-backward register allocation [81]). Expressions for the minimum number of

registers can also be used to evaluate the effectiveness of register allocation schemes which

are based on heuristics, since some schemes may require more memory than the theoretical

lower bound in order to maintain simple control structures.

4.3 Lattice-Based DWT Architectures

This work is concerned with the design of VLSI architectures for the orthonormal DWT

which projects a signal onto the compactly supported orthonormal wavelet bases introduced

in [65]. The orthonormal DWT is computed using two-channel paraunitary filter banks [85],

[86]. In particular, the compactly supported wavelets which we are concerned with in this

work can be computed using two-channel FIR paraunitary filter banks. These filter banks

result in perfect reconstruction (PR) analysis/synthesis systems which project signals onto

a set of orthonormal basis functions. Any two-channel FIR paraunitary QMF bank can be

51

implemented using the QMF lattice [87], which has many desirable properties such as PR in

the presence of coefficient quantization and low implementation complexity. These advan-

tages of the QMF lattice motivated us to design efficient architectures for the orthonormal

DWT based on this structure.

We have described folded [70] and digit-serial [88], [71], [89] architectures which are based

on the QMF lattice implementation in [79]. Folded DWT architectures are appealing be-

cause they lead to single-chip implementations which can be pipelined for high-throughput

or low-power applications. Digit-serial architectures also lead to single-chip implementa-

tions, and these architectures have simple interconnection and 100% hardware utilization for

any number of levels of wavelet decomposition. Folded and digit-serial architectures which

have been presented in the past are based on direct-form filter structures which are not as

efficient as the QMF lattice for computation of the orthonormal DWT. Two contributions

are made in [79]. First, we show that, for the orthonormal DWT, use of the QMF lattice

structure can lead to folded and digit-serial architectures with approximately half the num-

ber of multipliers than corresponding direct-form structures, at the expense of an increase

in the system latency. Furthermore, these architectures possess better finite word-length

properties. Second, we present techniques for mapping the 1-D orthonormal DWT to folded

and digit-serial architectures which are based on the QMF lattice structure.

The basic idea behind the folded DWT architectures is to time-multiplex filtering opera-

tions performed at various rates in the algorithm description to a small number of hardware

filters [72], [73], [74]. The folded hardware is clocked at the same rate as the input data,

resulting in a single-rate implementation of a multirate algorithm. Detailed folded DWT

architectures based on direct-form FIR filter structures were derived in [73]. In [79] and

[77], we present a systematic algorithm to construct folded architectures based on the QMF

lattice for the orthonormal DWT. A detailed example is given to demonstrate the algorithm,

and comparisons are made with the folded direct-form architectures in [73].

DWT architectures based on digit-serial processing techniques [88], [71], [89] were intro-

duced in [73]. The number of bits processed per cycle, called the digit-size, varies through-

out the digit-serial DWT architecture. The digit-size is chosen such that the architecture

is single-rate and achieves 100% hardware utilization. This is in contrast to folded DWT

52

architectures, which result in less than 100% hardware utilization. It may be noted that

while it may be possible to design folded DWT architectures which achieve 100% hardware

utilization, the control complexity in these architectures would be much higher. In [73],

digit-serial architectures were presented for direct-form implementations of the DWT. In

[79] and [77], we present a general method based on polyphase decomposition of filters [85]

for implementing two-channel systems using digit-serial processing techniques. This method

is used to derive digit-serial architectures based on the QMF lattice for the orthonormal

DWT.

4.4 Architectures for Tree-Structured Filter Banks

In this paper, we develop a methodology for designing efficient VLSI architectures for M-ary

tree-structured filter banks which are constructed from a single M-channel FIR filter bank.

Full and pruned tree-structured filter banks are useful for many DSP applications, such

as signal coding and analysis. Recent interest in the discrete wavelet transform (DWT) has

significantly increased the number of applications for tree-structured filter banks because the

DWT can be computed using a pruned tree-structured filter bank [64], [65]. Computation of

wavelet packet bases is another application of pruned tree-structured filter banks [90]. For

full and pruned tree-structured filter banks, FIR filters are used almost exclusively in practice

because excellent M-channel FIR filter banks can be designed without worrying about the

implementation issues associated with IIR filter banks. For this reason, we concentrate on

designing architectures based on M-channel FIR filter banks.

Synthesis of folded DWT architectures was accomplished in [73] by scheduling the fil-

tering operations to hardware and then synthesizing the control using life-time analysis and

forward-backward register allocation. Orthonormal DWT architectures based on the QMF

lattice structure were developed in [77] by iteratively applying single-rate folding techniques

[70]. The design methodology we have developed in [75] operates directly on the multi-

rate algorithm description of M-ary tree-structured filter banks, including the DWT. This

methodology simultaneously schedules and retimes the system to maintain low control com-

plexity and low memory requirements in the synthesized architecture. The methodology has

several attractive features.

53

• The methodology can be used to synthesize architectures for a wide class of multirate

DSP algorithms while previous techniques were restricted to handle only synthesis of

DWT architectures.

• The methodology is simple because our scheduling algorithm and folding equations

operate directly on the multirate algorithm description rather than first constructing

an equivalent single-rate algorithm description.

• The resulting architectures have simple control and low memory requirements.

• The methodology accounts for pipelining so architectures can be designed for high-

throughput and low power [80] applications.

• The methodology provides a complete high-level description of architectures for any

uniform implementation style, i.e., architectures which are bit-parallel, bit-serial, or

digit-serial with fixed digit-size.

5 High-Speed Digital Communications:
HDSL/ADSL/VDSL

In recent years, a consensus has been growing that the use of integrated digital network

carrying all kinds of information (speech, computer data, video, medical imaging, etc.) is

imminent in the future. The right starting point to achieve this dream was to utilize the

under-loaded telephony network for data communication. More efficient utilization of the

telephony network, also known as the subscriber loop plant, for high speed digital communi-

cation has been stirring much interest recently. The trends towards integrated networks and

the investments involved make even a small improvement in the performance/cost tradeoff

a worthwhile step. Using twisted pair telephone loops to transmit high speed data is a cost

driven choice. This led to the introduction of the digital subscriber loop (DSL) as a way to

denote transmitting digital information over subscriber loop plant. Fig. 18 shows the major

two steps when connecting the central office to the end user. One main cable that has many

subscriber loops in it connects the central office to the local distribution box, residing on

the curb side. Many connections go from the distribution box to different end users. Due to

54

o- Copper-wire
major cable

Unshielded Twistec
Pair

O
Central Office

Distribution Box
(curb side)

D CD
□ CD
□ CD
n CD
□

n
en

Figure 18: The Subscriber Loop Plant

the replacement costs, the curb to the user connection is the most cost sensitive connection

in the data communication link. This connection is also called the premises environment.

Numerous high speed digital communication systems have been proposed for the digital sub-

scriber loops. The High-speed Digital Subscriber Loop (HDSL) [91], was introduced as a

step further from the DSL. As the video on-demand was a driving force for this investigation,

there was no need for equal transmission rates in each direction of the communication link.

Instead, more rate was given to the central office to the user direction on the expense of the

user to the central office direction. That kind of topology was introduced as the Asymmetric

Digital Subscriber Loop (ADSL) and Very High-speed Digital Subscriber Loop (VHDSL)

[92] [93] [94]. Many systems have been proposed to maximize the system performance for any

given channel. The performance is measured by the baud rate and the bit error rate at the

receiver end.

The Discrete Multitone (DMT) [95] [96] [97] and the Carrierless Amplitude/Phase mod-

ulation (CAP) [98] [99] are two viable techniques for high speed digital transmission over

copper wires. The Discrete Multitone system DMT, was recently introduced as a practical

implementation of the known multitone channel. The CAP system is a QAM like modu-

lation that was introduced in the seventies. The ordinary CAP scheme is a 2-dimensional

modulation with Hilbert-pair signaling.

In our research, the idea of expanding the CAP system beyond 2-D was investigated. This

idea offers many potentials for improvement over the original CAP system. One possible

55

advantage can be increasing the system throughput on the expense of the increased com-

plexity and increased receiver interference energy. A 50% increase in the system throughput

is possible by going from two-dimensional to three-dimensional signaling. Another possible

application is in the area of the multiple access communication environment for the premises

environment. This would allow multiple users to enjoy their own channels of communica-

tions while they use the same physical communication link. We call this new technique

Orthogonality Division Multiple Access (ODMA).

The summary of the two techniques, DMT and CAP, is introduced in section 5.1. As

our own investigation proved that the CAP system is more promising in terms of the per-

formance cost tradeoff, the CAP system will be given more emphasis here. The feasibility

of constructing 3-D signaling for the CAP and writing the problem in the form of an opti-

mization problem is explained in section 5.2. Sequential Quadratic Programming was used

to solve the optimization problem as a Minimax problem. The condition for perfect recon-

struction (PR) with the 3-dimensional case is studied. The performance of the 3-dimensional

system is tested with simulations for the unshielded twisted pair copper wires. A summary

of the simulation results is introduced in section 5.4. The possibility of having higher dimen-

sions to allow the multiple access option is introduced in section 5.3. This multiple access

option allowed with higher dimensions for the CAP system will be suited for the premises

environment.

The Least Mean Square (LMS) adaptive algorithm is used in implementing the CAP

receiver equalization, as it offers good performance with reasonable complexity. Pipelining

the LMS using a moving average was previously developed [100]. As the performance of

the moving average pipelining starts to degrade with larger LMS filters, a new IIR based

relaxation for the LMS is introduced in section 5.5. The summary of this report as well as

the directions for possible future work are explained in section 5.6.

5.1 Background

5.1.1 Motivation

The problem of the DSL brought many interesting challenges in digital communications.

Technically speaking, transmitting huge amounts of digital information over integrated net-

56

work has many possible solutions. The feasibility of each solution differs according to the

specification needed and the amount of money that can be invested. First answer can be

simply replacing the whole current network with fiber optic links. This solution is known

as Fiber To The Home (FTTH). As FTTH involves unacceptable replacement costs, this

solution is beyond the foreseen future [101]. Another possible scenario is to replace only the

link between the central office and the distribution box. The link from the distribution box

to the end user is left, as it is the most cost effective one. This solution is known as Fiber To

The Curb (FTTC), and the bottleneck connection from the curb to the end user is called the

premises environment. The FTTC has many advantages as it can support the IMTV [101]

for multiple users per link, and it can be upgraded in the future FTTH. Another possible

solution can be employed by leaving the copper wire links intact and trying to maximize the

transmission throughput. Although it has minimal replacement costs, this kind of commu-

nication link has severe limitation if compared to the FTTC and FTTH scenarios. The rates

that need to be supported by this link are the Tl rate of 1.5 MHz and the DS1 rate of 6.1

MHz.

5.1.2 Discrete Multitone

Most of the realistic channels have non-flat characteristics, which require a more sophisticated

coding scheme to get closer to the theoretical limit of the channel capacity. In theory, one

can achieve the channel capacity limit by transmitting a signal that has the same spectral

shape of the channel. The theoretical limit for the channel capacity can be achieved with the

water pouring solution [96]. One way to approximate the water pouring solution is by using

the Discrete Multitone technique. With the DMT approach, the channel is approximated as

a finite number of piecewise continuous subchannels, each with a flat characteristic. Each

subchannel is then modulated separately with a QAM carrier which will generate a set of

complex QAM symbols. The symbols generated are appended with their hermitian extension

and passed through an IFFT block to get a sequence of real samples. At the receiver, an

FFT block is used to retain the original set of symbols. The channel distortions including

noise and interference will alter the value of the received symbols. For each subchannel, a

separate equalizer is used to invert the effect of the channel and to suppress the distortion

57

Complex!

N Tones

Encoder

2NIFFT Cyclic prefix

P/S

 >
?

Data In
DAC

*
N subchannels

N: complex

2N real values

Typical Discrete Multitone Tx

Channel
+noise

+Interference

N 1-tap
equalizers 2NFFT

2N:real

Strip Cyclic Prefix

S/P

Filtering

ADC

Data out

Original symbols altered by the channel

DMT receiver

Figure 19: The DMT Transceiver

Table 17: Finite word-length selection for ADSL: DMT

No. of bits output error in dB

double prec. -31
12 -30
8 -27
4 -18

added to the signal. Single-tap linear equalizers were previously suggested for such a scheme.

Another post-channel equalizer is still needed to limit the interblock interference introduced

by the channel memory. The full structure of the DMT transceiver is shown in Fig. 19.

The blocks within the receiver are generally easy to implement for high speed applications,

except for the equalization part. Pipelining techniques can be employed easily to achieve

very high speed architectures for the FFT block. As only half the output of the FFT block

is used, the FFT block can have reduced complexity by eliminating all redundant hardware.

Using a bank of 1-tap linear equalizer would achieve acceptable performance with reasonable

complexity. The effect of having finite word length was studied for implementing the DMT

receiver. An 8-bit word length was found to give acceptable performance and allowed a VLSI

implementation of the receiver equalizer (Table 1).

58

5.1.3 Carrierless AM/PM Transceiver

Carrierless AM/PM (CAP) is a bandwidth efficient, 2-dimensional passband transmission

scheme. The basic idea of the CAP system is to use two signals as signature waveforms to

modulate two data streams. The bandwidth efficiency is achieved in two steps. The first

step is by multilevel encoding of the data stream. Using 4-level encoding for each dimension

will generate the so-called CAP-16. Fig. 20 shows the 2-dimensional signal constellation for

the CAP-16. The other step for achieving bandwidth efficiency is using efficient signature

waveforms. The theoretical limit of that parameter is achieved when using Nyquist signaling.

Efficient shaping necessitates using signature signals that occupy more than one symbol

period in time.

Figure 20: 16-point signal constellation for CAP-16

Extending the signature waveform will shrink the frequency domain characteristics of

the signal. This extension of signature waveforms will lead to overlapping signatures of

successive symbols. The design of the signature waveforms should ensure no intersymbol

interference between consecutive symbols, and also no crosstalk between symbols in each

dimension. In practice, different signals can be used to meet those criteria. Examples for

that are the raised cosine signal and the square root raised cosine signal.

The advantage of going to 2-dimensional signaling is to be able to retain the same band-

width efficiency for a passband signal. The two orthogonal signals used as signature wave-

59

In-Phase Shaping Filter

Encoder

Quadrature phase filter

CAPTx

Adaptive In-phasc

Decoder

''
A/D

filtering
Decision

Adaptive q-phase

CAPRx

Figure 21: CAP System Transmitter and Receiver

forms are modulated versions of an original baseband signal, and are given by

Mt)

h(t)

g(t) cos2ivfct

g(t) sin 2nfct, (44)

where g(t) is the baseband signal and fc is a frequency that is larger than the largest frequency

in g(t). The pair {/i,/2} is called Hubert pair. Fig. 22 shows the time domain modulated

raised cosine signature waveforms and the normalized frequency characteristics for symbol

rate of 25MHz.

The structure of the CAP transceiver is shown in Fig. 21. The data stream is scrambled

into two symbol streams, and each is modulated with the corresponding signature waveform.

The receiver is implemented in adaptive fashion to invert both the channel and the signature

filters and retrieve the original sequence of symbols. Many topologies can be used to imple-

ment the receiver such as the linear equalizer and the decision feedback equalizer. The major

challenge in designing the receiver is to guarantee perfect reconstruction (PR) of the original

sequences. The transmitter, as well as the receiver, are implemented in a digital fashion.

The transmitter signature filters are implemented as fixed finite impulse response (FIR) fil-

ters. To implement the system with that topology, the sampling rate of the implementation

must be high enough to prevent aliasing effects. For that implementation, the input symbol

60

-2-10 1
Symbol Time Steps

10 15 20 25 30 35 40 45 50
Frequency in MHz

Figure 22: Two Signature Waveforms Over a Span of 6T in Time and Frequency

sequences are up-sampled (usually by a factor of 4 or 5) to match the implementation sample

rate. The performance of the CAP-16 system is found to be acceptable in terms of system

throughput and receiver bit error rate for the unshielded twisted pair environments.

5.2 Three-Dimensional CAP

One option to increase the CAP system throughput is by increasing the number of levels

in the multilevel encoding. This means going to larger signal constellation sizes; CAP-32,

CAP-64, CAP-128 etc. Another idea is by using higher dimension signaling. The idea

is based on modulating the data streams using more than two signature waveforms. The

major obstacle in designing the signals used as signature waveforms is the orthogonality over

multiple symbol periods.

Examining the original 2-dimensional CAP system as shown in detail in Fig. 23 shows it is

a multirate transmultiplexer problem. The channel and the interferences are taken out from

the figure to emphasize the problem we are solving. {s0, Si, $2} are tne three input sequences,

scrambled from the input bit stream. After going through the multirate transmultiplexer,

the output sequences, {SQ, S~1; S2}, are needed to be as close as possible to the input sequences.

61

up sampling signature waveform PR FIR down sampling

SO , t4 fO go u ,sn

SI , t4 fl
 » gl u

Ordinary 2-D CAP 1

3rd dimension l

Y

S7. , t 4 f2 g2 u „S7.

Figure 23: Expanding the 2-D CAP into 3-D CAP

The receiver equalizer solves the problem to find the perfect reconstruction (PR) solution.

The transmultiplexer has the multiple input multiple output transfer matrix T [102]

T GTH, (45)

where G, and H are the polyphase phase decomposition matrices for the receiver and the

transmitter, respectively, and T is a permutation matrix that depends on the different number

of delays inserted in the system filters. It can be easily shown that PR at the receiver end

can be achieved if and only if

z~nI, (46)

where I is the identity matrix and z~n denotes n delay elements. For proper system design,

the receiver must be implemented with FIR topology. If this is not met, the adaptive

equalizer at the receiver will be an IIR adaptive filter, which would not be tractable. In

this article, the PR condition will always be assumed to have FIR receiver topology. The

minimax optimization algorithm was performed to find three signals that can be plugged into

a PR system with FIR receiver topology. The optimization used was based on Sequential

Quadratic Programming method [103]. The optimization problem is stated mathematically

as finding the set {/0, A, /b}, that solves

62

m™{foJuf2}max{\F-R\)

s.t. GTH = z~nI,

where F is the frequency characteristics of the signals set {/o,/i,/2}> R is the passband

frequency response of the raised cosine pair, and G is found by inverting H to obtain the

polyphase decomposition of the receiver filters. The three signals found using the minimax

optimization approach are plotted in Fig. 24. The advantage of having three dimensions

1.2

1

 1 i ■ '' i i i 1.4

\2

■ ■ ■■ i i i i i i i i

0.8

2 1
0.6 0 a

(A

0.4 H
(0 ffnn 1 / / ^\ /\ -

<D
10 0.2 D

b
p 0

N

11 / *

-0.2 o0.4
z

•jil ■

-0.4

0.2
-0.6

-0.8 0
3 -2-1012) 5 10 15 20 25 30 35 40 45 50

Symbol Time Steps Frequency in MHz

Figure 24: Solution of Optimization Problem: 3 signals in Time and Frequency Domains

over the 2-D CAP is to allow 50% increase in throughput on the expense of increased system

complexity and 2 to 3 dB of receiver error.

5.3 ODMA

The concept of three-dimensional CAP can be extended to more dimensions, opening the

door for multiple access option. As the signals generated using that scheme are orthogonal

in nature, we call this technique Orthogonality Division Multiple Access (ODMA). Fig. 25

shows the possible structure for ODMA. Simulations were carried out to test the feasibility of

ODMA. Signals were generated using the same optimization problem defined in the previous

section. If we have the overall symbol rate to be constant 1/T, We can allow the transmission

63

to take place using K orthogonal signals. The upsampling of each stream is kept at IK.

This means we don't have any increase in the system throughput, but rather we have the

multiple access option. Simulations were carried out to generate 4-D and 6-D signals. Fig. 26

along with Fig. 22 give the signals designed for 4-D ODMA. The signals were designed for

upsampling of 8, and are to carry the same 2-D symbol rate. The limit on the number of

signals that can be generated still needs more investigation.

up sampling signature waveform PR FIR down sampling

\ 2k
A

su

 > gl \ 2k ,S1

 »

\ 2k ,S2

\ 2k ,S(l
g(l c-1)

Figure 25: ODMA

5.4 Simulation Results

Simulations were carried out to test the functionality of the proposed 3-D CAP system over

the UTP copper wire. The channel was inserted in the transmultiplexer problem, and the

receiver PR is performed with linear adaptive equalizer. Using the EIA/TIA-568 standard for

unshielded twisted pairs of categories 3 and 5, the PR condition was met using the adaptive

linear equalizer. Fig. 27 shows the 3-dimensional signal constellation at the receiver end

for the category-3 cable case with no near end crosstalk (NEXT). Similar performance is

achieved for category-5 cables. Fig. 28 shows the signal constellation for the category-5 case

64

100 200 300 400 500
4-D: frequency response

Figure 26: 4-D, in time and frequency

in the presence of NEXT. The adaptive linear equalizer achieves PR at the receiver and the

adaptation rule used is the LMS algorithm.

Dimension 2 -4 -4
Dimension 1

Figure 27: Three Dimension Constellation

5.5 LMS Relaxation

Pipelining is a major technique for developing high speed digital signal processing (DSP)

architectures. The pipelining offers an increase in the sampling rate by reducing the critical

path propagation delay. Pipelining of adaptive filters is made difficult due to the coefficient

65

dimension 2 -4 -4
dimension 1

Figure 28: PR for Category-5 UTP, with NEXT

update loop. Keeping the input-output relation of the serial LMS while inserting lookahead

delays in the architecture closed loops introduces a very expensive hardware overhead.

The relaxed lookahead LMS is an approximation of the LMS that can be pipelined. It

is obtained by relaxing the constraint of maintaining the exact input-output mapping. The

input-output relation is maintained only in the stochastic sense. To introduce D\ delays

in the outer loop and D2 delays in the inner loop, the input-output relation becomes very

complicated. The approximation introduced in [100] will lead to the following simple filter

equations;

W(n) = W(n - D2) + Z{n)
LA-l

Z(n) = fj. J2 e(n - Dx - i)U{n - Dx - i)
i=0

e(n) = d{n)-WT{n-D2)U(n), (47)

where WT(n) = [wi(n),w2{n),....wN(n)] is the filter tap weights, U(n) is the input vector,

and Z(n) is the feedback weight update variable . LA is called the lookahead factor, and we

should keep LA < D2. The relaxed LMS is essentially the serial LMS with delays inserted

in the closed loops and a moving average block is added to compensate for the performance

66

degradation of the filter. Fig. 29 shows the closed loop of only one tap with the delays

inserted. This approximation introduces added error to the serial LMS misadjustment. The

misadjustment for small LMS update factor p and large N can be written for a normalized

power environment as;

aNß
M (48)

2-(oJV/x)'

where a is a factor determined by the input sequence eigen-structure. The misadjustment

can be expanded with higher powers of // neglected as;

M = ^(1 + ^). (49)

It is apparent from this equation that the relative misadjustment increases with the filter

order, N, as illustrated in the previous equation.

Relaxation of LMS Compensation

Dl delays in the outer loop

Figure 29: Relaxed Lookahead LMS

Another approximation is introduced by replacing the MA compensation with a fixed

one-pole IIR filter as shown in Fig. 30. The system equations will be:

W(n) = W{n-D2) + Z(n)

Z(n) = aZ{n - 1) + e(n - Dx)U{n - Dx)

e(n) = d(n)-WT(n-D2)U(n), (50)

67

IIR factor

<z>
D Z(n-l)

Z(n)

Figure 30: IIR Compensation

where "a" is the IIR fixed coefficient. The compensation block overhead can be significantly

reduced if the the value of "a" is restricted to 2~k, for integer values of k. The implementation

of the coefficient will be a simple shift operation. The IIR relaxation can offer up to 3dB

improvement over the relaxed lookahead technique.

5.6 Concluding Remarks

During the course of this project, a set of new tools were developed to facilitate the design

and implementation of line equalization for the HDSL/ADSL/VDSL applications. IIR based

relaxation for the LMS was found to have better performance as compared to the relaxed

LMS. This improvement increases for large LMS filters. The DMT receiver was implemented

for finite word length, and with significant reduction in hardware costs. The CAP system

was studied for multi-dimensional signaling. Expanding the ordinary 2-dimensional CAP

into higher dimensions offers a practical solution for throughput increase without the need

to increase the number of levels in the multilevel encoding. The PR condition with FIR

receiver topology was achieved by finding the suitable signals for the transmitter. Minimax

optimization proved to be a convenient tool for designing the required signals. Expanding

the system into even higher dimension looks possible, but the problem still needs more

investigation. Although the final bit error rate of the 3-D system is few dB worse than the

2-D system when using linear equalizer, the overall system performance remains acceptable

for the UTP environment. The advantage of not using more levels of the encoded signal

becomes apparent when implementing the receiver equalizer. Increasing the number of levels

68

per dimension makes it more difficult for the equalizer to identify each level. Another frontier

that is opened by the multi-dimensional CAP is the ODMA. More work is still needed to

investigate the full potential of the ODMA.

6 Finite Field Arithmetic and Reed-Solomon Coders

Finite field arithmetic operations have received a lot of attention because of their important

and practical applications in cryptography, coding theory, switching theory, and digital signal

processing. The finite field GF(2m) has 2m elements and each of them is represented by m

binary digits based on the primitive polynomial f{x). For such representation, addition and

subtraction are bit-independent and relatively straight-forward. However, multiplication,

exponentiation and division are much more involved. Hence design of efficient architectures

to perform these arithmetic operations is of great practical concern. In this project, several

novel architectures on finite field multiplication and exponentiation have been derived and

their advantages have been compared with some existing architectures.

Reed-Solomon codes are the most frequently used error control codes with applications

ranging from digital audio disc players to the spacecraft. Its encoding and decoding pro-

cess makes use of finite field arithmetic. Therefore, based on one of the proposed efficient

multiplication algorithms, an efficient Reed-Solomon encoder has been derived during this

project.

Four papers were published in this area. In this report, the main results are summarized

in the order of their publication time as following:

1. Efficient power based Galois Field arithmetic architectures [104].

2. Low latency standard basis GF(2m) multiplier and squarer architectures [105].

3. Efficient standard basis Reed-Solomon encoder [106].

4. Efficient finite field serial/parallel multiplication [107].

69

/m m

B -5^-J
Converison

To

Power
—?—*1

Expo;
nenti
ation

Multi-
plication

{dj}

Conversion
To

Conventional
Basis

m/ an/p

Result
Computation

Figure 31: System Level diagram for Proposed New Architecture

6.1 Efficient Power Based Galois Field Arithmetic Architectures

The concept of representing the finite field elements in terms of the primitive element a has

been utilized to derive a new architecture to perform a general operation like ABn + C [104].

Once the elements are expressed in terms of the primitive element a, the power of the result

can be computed, i.e., the power need to be added for multiplication, subtracted for division

and multiplied for exponentiation. After that, the power of the result can be converted to

conventional basis representation. Fig. 31 shows the system level diagram of the proposed

architecture.

6.1.1 Conversion to Power

In the conventional basis representation, each element of GF(2m) can be represented as a

sum of l,a,a2, am_1. If we use 2m_1 bits to represent power, i.e., each bit represents

a particular power, we can get the power of a particular operand by a logical AND of m

i/p variables a0,a1,a2,...,am~l. In this architecture, the operand B is converted into the

power form while the operand A is left in the conventional basis. The output of this block

has 2m - 1 bits with each bit corresponding to a power of a.

Example. B = a3 + a = a9, at the output of this block, the bit corresponding to a9 is

set to 1 while the rest of bits are all set to 0.

70

Figure 32: Result Computation Module

6.1.2 Result Computation

Given an element in its power form, exponentiation Bn is equivalent to multiplying the power

and computing the result mod 2m - 1. This computation can be done apriori provided n

is known.

For multiplication ABn, let

Bn bpa
p

ao + aid + ... + am-ioi m— 1 (51)

where 0 < p < 2m - 1. Then,

ABn = a0bpa
p + aibpa

p+1 + ... + am_i&po
p+m-1. (52)

The architecture to perform this operation is shown in Fig. 32. Notice that in general to

perform summation in GF(2) we need an XOR gate, but in this case for each a\ at most

only one of the contributing terms will be 1 and therefore the XOR can be replaced by an

OR gate. Thus, for each power bit, we need m (2 input) AND and m-1 (2 input) OR gates.

The {dj}'s for 0 < i < 2m - 1 are computed using 2m - 1 circuits similar to Fig. 32 and

these are inputs to the conversion unit to convert the result ABn from power to conventional

basis. This result can then be added to C as shown in Fig. 31.

Example. (Conf) In our Example, b6 = 1. Thus, only terms d& through d9 could be 1.

Rest of rfi's are 0. Also, A — a2 + a, therefore, a2 = a\ = 1 and a3 = a0 = 0. Computing de

through dg, we get

d6 = 0.0 + 1.0 + 1.0 + 0.0 = 0

71

12 13 14

* '

8 9 10 11

\ ', _ "^ ',-~ >■*! t

4 5 6 7

\ ', _

0 1 2 3

Figure 33: New Encoder Architecture

d7 = 0.0 + 1.0 + 1.1 + 0.0 = 1

d8 = 0.0 + 1.1 + 1.0 + 0.0 = 1

d9 = 0.1 + 1.0 + 1.0 + 0.0 = 0.

6.1.3 Conversion to Conventional Basis

To convert from power to conventional basis, we can utilize a 2m to m encoder. This would,

however, require m XOR gates each with 2m_1 inputs. This exponential dependence of the

number of i/ps to a gate on m is clearly not a desirable property from VLSI implementation

viewpoint.

Utilizing the property of Galois Field GF(2m) that each element can be represented as

a sum of 1,a,a2,...,am_1, it is, however, possible to tradeoff the number of inputs with

the number of gates required for encoding. This new encoder architecture is illustrated in

Fig. 33 for GF(24) generated by a4 = a + 1. In Fig. 33, each of the box marked i receives di

from the result computation module as an input and performs XOR operation of this and

other inputs associated with this box. After 3 delays, the element's representation will be

available in the conventional basis. In general, such an architecture for the encoder will need

0(2m) XOR gates while the 2m to m encoder needs m(2m'x - 1) gates [108].

72

Table 18: Summary of Hardware Requirements

Item/Operation Massey-Omura [109] Architecture of [110] New Architecture
Basic Cell • O(0.5m2) AND ,

O(0.5m2) XOR
m2 AND

m(m+k) XOR
2m-1 AND ,
m - 1 OR, 1-2 XOR

ABn m2 copies 2m-1 copies 2m — 1 copies
Latency m+1 2m2 + 3m O(m)
Time step O(\log20.5rri2])XOR, 1 AND AND, XOR 0(m- \log2m\) XOR

6.1.4 Comparison with Other Architectures

The proposed architecture has been compared with the Massey-Omura architecture [109]

and the exponentiation architecture presented in [110]. The comparison will be in terms of

2 input gates.

In general, for GF(2m), the Massey-Omura architecture requires m2O(0.5m2) AND and

XOR gates. The latency is m + 1 time steps where each time step has the delay of

O(\log20.5m2~\)XOR and 1 AND gate.

The architecture presented in [110] requires 2m - 1 multipliers where each multiplier

needs m2 AND and m(m + k) XOR gates where k is the number of non-zero terms in the

primitive irreducible polynomial used to generate GF(2m). The latency is 2m2 + m time

steps where each time step is the delay of AND followed by a XOR gate.

Our architecture requires (2m - l)(2m - 1) AND, (m - l)(2m - 1) OR and <3(2m - 1)

XOR gates. The latency is also 0(m) time steps where each time step is the delay of

0(m - \log2rn\) XOR gates.

These results are summarized in Table 18. We consider GF(2m) generated by a primitive

irreducible polynomial with k non-zero terms. The throughput rate for all the architectures

is 1 result every clock cycle.

It is apparent from Table 18 that the proposed new architecture has a low latency. It

is also hardware efficient for m < 6. For larger finite fields, the architecture proposed in

[110] is more hardware efficient. The architecture proposed in [111] is based on a square and

multiply algorithm for exponentiation. It utilizes parallel-in-parallel-out multipliers based

on a standard basis representation. It was shown in [112] that in general the standard basis

multipliers have lower design complexity and are easier to extend to large finite fields because

73

c3.0

C?Q|

e1.0,

f0 80,0*
ao cTT* Q),o

,![> fL> IEb ID;

Q.2

(I OEDcl.y

^-».

^e-P0

Figure 34: Parallel-in-Parallel-out GF(24) Multiplier

of their simplicity, modularity and regularity in architecture. It is also easier for architec-

tures based on standard basis representations to allow programmable primitive irreducible

polynomials, thus providing the user with greater flexibility in system design.

6.2 Low Latency Standard Basis GF(2m) Multiplier and Squarer
Architectures

6.2.1 Parallel-in-Parallel-out Multiplier

6.2.1.1 Multiplier Architecture

A low latency (latency of m + 1) standard basis GF(2m) multiplier has been proposed in

[105]. It is a semi-systolic architecture which makes use of two broadcast signals. The system

level diagram of this parallel-in-parallel-out multiplier is shown in Fig. 34. This multiplier

has m2 basic cells and the structure of the basic cell is shown in Fig. 35, which has 2 2-input

AND, 2 2-input XOR gates and 3 1-bit latches. The parameter C'= EfcU* ckaki an element

of GF(2m), is also an input to the multiplier so that the circuit actually performs AB + C.

6.2.1.2 VLSI Chip Implementation

A prototype VLSI chip was designed using CMOS 1.2 //m n-well technology. The chip layout

is shown in Fig. 36. The chip implements the multiplication algorithm shown in Fig. 34 for

GF(24). A true single phase clocking scheme [113] was used for the chip. The chip is a

74

FF

FF

FF

i+lj

H

-^[>

$[W j+i

j+i

Figure 35: Parallel-in-Parallel-out GF(24) Multiplier

multistage pipeline and can produce one result every clock cycle. The chip has an active

area of 0.434 mm2 and requires 1076 transistors and is programmable for different primitive

irreducible polynomials. The design has been functionally verified using irsim [114]. Using

Hspice simulator, the critical path was found to be 2.7ns.

w * * *'. * *. * * * * * * * * *n T

I a I I I >t i i *>* ■ i i> I ■ I f I v I r » i I ■ I ■ I M I * I ;■

Figure 36: Layout of the proposed multiplier chip

6.2.1.3 Comparison with Other Multipliers

The properties of the proposed multiplier are compared in Table 19 with those of the multi-

pliers in [115] [116]. The comparison has been done for variable multiplier and multiplicand

and programmable primitive irreducible polynomials with all architectures producing 1 result

75

Table 19: Comparison of Different Multipliers

Item Standard Basis [4] Dual Basis [17] Proposed
Number of basic cells 2 vnr m m2

Basic Cell 2 2-input AND ,
2 2-input XOR,
7 1-bit latches

2m 2-input AND,
2m 2-input XOR
3m 1-bit latches

2 2-input AND,
2 2-inputXOR
3 1-bit latches

Latency 3m m+1 m+1
Time step 1 2-input AND and

1 2-input XOR gate
1 2-input AND and

\log2(m — 1)] 2-input XOR gate
1 2-input AND and
1 2-input XOR gate

every clock cycle. The comparison is again done in terms of 2-input gates.

It is worth noting that the proposed multiplier needs less than half the number of latches

required in previous implementation [115] while maintaining the same critical path. The

system latency has also been reduced to m +1 (assuming the outputs also are latched) from

3m. Compared to the architecture of [116], the proposed multiplier has the same hardware

and system latency but there is a reduction in the critical path from 1 AND gate followed

by \l0g2m~} XOR gate to an AND gate followed by a XOR gate. The price we pay for

this reduction in hardware requirement and system latency is to allow two signals to be

broadcast.

6.2.2 Parallel-in-Parallel-out Squarer

6.2.2.1 Squarer Architecture

In a finite field,

(a + ß)2 = a2 + ß2 (53)

where a, ß e GF. Using this property of finite field, we develop a hardware efficient squarer

for finite field. We shall illustrate this with an example for GF(24). Squaring operation can

be represented by

A = a0 + (Xia + o2a
2 + 0,3,0?

A2 = a0 + aid2 + a2a
4 + a3a

6. (54)

To obtain the result in the standard basis, we need to express a4, a6 in terms of {1, a, a2, a3

}, i.e., in the standard basis representation. This can be achieved using the squarer shown

76

h
»3

C3

o n
'3,0

a3

o

C3,l

O =Delay

-a*p,

•2

'2,0 '2,1

"^P,

fl
fl
al

1,0 1,1
-e-p,

fo

'0,0 '0,1
-e-p„

Figure 37: Parallel-in-Parallel-out Squarer

a
m/2 h 1

2k
'm-2

I .
2k
ml • = Delay

rl Lp.
■1 k u .

a2k ; -j\s ai

* h > cl n
,2k

i-2

a Traverse line
1-1

Figure 38: Basic Cell Cy of the squarer

in Fig. 37. The squarer consists of m[m/2\ basic cells. The inputs to the squarer are

C = a0 + aiQ2, B = aA, a2,a3,f and /', where /' denotes the primitive polynomial f

multiplied by a. The first column computes Ba,2 + C and Bo? while the second column

outputs the desired result

a0 + a\a2 + a2a
4 + a3a

6

C + Ba2 + Ba2a3.

(55)

The basic cell in the squarer performs multiplication by a2 and is shown in Fig. 38. The

squarer is semi-systolic where each basic cell needs 4 latches. A fully systolic version would

77

Table 20: Comparison of Different Approaches to Squaring

Item Multiplier Power-sum [117] Proposed
Number of basic cells 2 mr 9 mr m[m/2\

Basic Cell 2 2-input AND ,
2 2-input XOR,
3 1-bit latches

3 2-input AND,
3 2-input XOR
10 1-bit latches

3 2-input AND,
3 2-inputXOR
4 1-bit latches

Latency 3m 3m [m/2\ + 1
Time step 1 2-input AND and

1 2-input XOR gate
1 2-input AND and
1 3-input XOR gate

1 2-input AND and
1 3-input XOR gate

need 10 latches.

This squarer can be easily extended to a larger finite field. In general, for GF(2m), we

need [m/2\ columns where each column comprises of m basic cells. In the general case, the

B input to the first column is am or am+1, i.e.,

B = /, for even m

— /') for °dd m.

(56)

Also note that we can use degenerate versions of the basic cell in the rightmost column

and in the bottom row because some of the outputs are not needed.

6.2.2.2 Comparison with Other Designs

Table 20 compares the proposed squarer with a dedicated multiplier and the power-sum

circuit [117]. The comparison is again done in terms of 2-input gates and all architectures

produce 1 result every clock cycle.

The proposed squarer results in hardware savings of more than 50 % over using the

power-sum circuit of [117] and savings of more than 25 % over a dedicated multiplier to

perform the squaring operation. The system latency has been reduced to Lm/2J + 1 from

3m without any increase in the critical path.

78

6.2.3 Parallel-in-Parallel-out Exponentiator

6.2.3.1 Exponentiation Algorithm

Let a be an arbitrary element in GF(2m) and we need to raise it to power N{\ < N < 2m-l).

Note the range 1 < N < 2m -1 is sufficient to cover the entire range of N because a2"1-1 = 1

and hence

aN = aN mod 2--l_ (57)

The exponentiation operation can be performed using the following equation:

= an°.(a2)ni.(a22)n\ ... (a2"1-1)"-1 (58)
m—1

i=0

where,

Ei= {a2Y = <**, ifrn = l (59)

= 1, if rii = 0

Therefore, the exponentiation operation can be performed recursively. Fig. 39 shows the

flow chart of this recursive algorithm.

6.2.3.2 Exponentiator Architecture

The square and multiply operations in exponentiation can be implemented using the bit-

level pipelined multiplier and squarers developed in the previous sections. The architecture

for a bit-level pipelined exponentiator is shown in Fig. 40. This architecture consists of

(m - 1) GF(2m) multipliers, (m - 1) GF(2m) squarers and m, m bit MUXes. The squarer

SQi evaluates a* for i =1,2,..., m - 1. The multiplexor MUXt sets E{ = o?\ if n{ = 1 else

Ei is set to 1. The multiplier MULi evaluates Ri for i = 1,2 ..., m — 1.

It is easy to verify that this architecture will compute ß = aN. Notice again that the

multiplier and squarers used are pipelined at the bit-level and hence this architecture can

accept one new input every clock cycle where the clock period is determined by the delay

79

Enter <*

N = (n m.i, .III.IIQ)

Erf= «
R.! =1

k =0

Is nk=0

Yes

R k= R k.i
Ek+l = Ek

k = k+l

X

No

Rk=Rk.lEk
2

Ek+l=Ek
k = k+l

Is k = m ?

No
Yes

l = aN=Rm. m-1

Figure 39: Flow Chart for Exponentiation Operation

4, 1
MUX_1

2D

SQ_1
1—a.

MUX_2

6D

SQ_2

2D

1—<U
MUX_3

SQ_3

E_04

2D

MUL_1

2 4,

R_l

MUL 2

MUX_4 E 34,

R_2

MUL_3

R_3

Figure 40: Bit-level Pipelined Exponentiator

80

Table 21: Comparison of exponentiators

Item Exponentiator [9] Proposed
Number of multipliers 2(m-l) m-1
Number of cells in multiplier 9 9 m
Basic Cell in Multiplier 2 2-input AND ,

1 3-input XOR,
7 1-bit latches

2 2-input AND,
2 2-input XOR
3 1-bit latches

Number of Squarers - m-1
Number of cells in squarer - m[m/2\
Basic Cell in Squarer 3 2-input AND,

3 2-input XOR,
3 1-bit latches

Latency 2m2 + m m(m - 1) + [m/2J + 1
Time step 1 2-input AND and

1 3-input XOR gate
1 2-input AND and
1 3-input XOR gate

of a 2-input AND gate followed by a 3-input XOR gate. The architecture is a parallel-in-

parallel-out architecture which can yield 1 output every clock cycle.

6.2.3.3 Architecture Comparison

The properties of the proposed bit-level pipelined exponentiator are compared with the

exponentiator of [110] in Table 21. Both the architectures produce 1 result every clock cycle.

It is worth noting that in the proposed exponentiator architecture, the primitive irre-

ducible polynomial / can be shared between the multiplier and the squarer. This effectively

reduces the number of latches needed in each basic cell of the squarer to 3.

Prom this table, we can see that the proposed exponentiator results in hardware savings

of 12.5% over [110]. We have also reduced the system latency to m(m — 1) + [m/2\ +1 from

2m2 + m without any change in the critical path.

6.3 Efficient Standard Basis Reed-Solomon Encoder

An efficient Reed-Solomon (RS) recoder has also been presented during this project [106].

The hardware complexity is identical to the well-known Berlekamp dual basis encoder. How-

ever, it offers two advantages -a critical path independent of the order of RS codes being

81

D

Qgi 9%

D

Qgr-1

4- D

IIP ±
-e

0/P

Figure 41: System Diagram of Reed-Solomon Encoder

implemented and the ability to encode without any need for basis conversion.

6.3.1 Reed-Solomon Encoding Algorithm

Systematic RS encoding can be described by

v(x) = xn~ku(x)+ < xn ku(x) >flt(l), (60)

where gt(x) is the generator polynomial of a terror correcting RS code, < xn~ku(x) >gt{x)

denotes the remainder when xn-ku(x) is divided by gt(x). This equation assures that v(x)

is a multiple of gt(x) and the code is systematic. The block diagram of RS encoder is given

in Fig. 41.

6.3.2 Reed-Solomon Encoder

The proposed RS encoder is based on the new semi-systolic multiplier in [105]. This standard

basis multiplier computes A, Aa, •■■, Aam~l in sequence and performs a scalar multiplication

of these vectors with bo,bu-',bm-i, respectively. These partial products are added to

compute the multiplication AB. The computation of the vectors A, Aa, • • •, Aam~l can be

shared if we need to multiply one term A with a number of terms simultaneously. Suppose,

we need to compute Pi = ABX and P2 = AB2 at the same time. Then,

m—1

Px = i4Ö!= J3(^a*)*ifc (61)
Jfc=0
m—1

P2 = AB2= £(Aafc)&2Jk.
fc=0

82

b!
j

b2

j
I

'0

1 *

ÜY-a* \ * FF — = T* i 1 HV ■

^Ah IV

z FF iw
•

Figure 42: Basic Cell Citj of the Proposed Reed-Solomon Encoder

The above equation illustrates that the computation of A, Aa, • • •, Aam~1 can be shared

between the computation of the products Pi and P2. Once these vectors are computed,

they can be simultaneously multiplied to B\ and B2 to obtain the products Pi and P2.

This approach can also be extended to any number of simultaneously multiplications. As

can be seen from Fig. 41, there exist a broadcast signal in RS encoder, which is composed

of m bits and this symbol is multiplied by r coefficients of the generator polynomial gt(x)

simultaneously. Therefore, the substructure sharing idea can be utilized to derive efficient

RS encoder.

The basic cell for implementing (61) is shown in Fig. 42, which can also be used as the

basic cell for RS encoder. For RS encoder over GF(24), the proposed structure consists of

16 cells identical to the basic cell shown in Fig. 42. The critical path consists of 1 2-input

AND gate followed by 1 2-input XOR gate.

In general, for a (n,k) RS encoder with symbols from GF(2m), the proposed encoder

would consist of m2 basic cells. Each basic cell would have (n — k + 1) 2-input AND gates,

(n - k + 1) 2-input XOR gates and (n-k+2) 1-bit latches. The critical path in the proposed

RS encoder is independent of the order of the RS code being implemented and is equal to

the propagation delay of 1 2-input AND gate followed by a 2-input XOR gate.

83

Table 22: Comparison of exponentiators

Item Berlekamp's Proposed
Number of basic cells m m2

Basic Cell m{r + 1) 2-input AND,
m(r + 1) 2-input XOR,
ra(r + 2) 1-bit latches

r + 1 2-input AND,
r + 1 2-input XOR
r + 2 1-bit latches

Latency m + 1 m+1
Critical Path 1 2-input AND and

\log2{m — 1)] 2-input XOR gates
1 2-input AND and
1 2-input XOR gate

Basis Conversion Yes No

6.3.3 Comparison with Berlekamp's Dual Basis RS Encoder

The properties of the proposed RS encoder are compared with the well-known Berlekamp's

encoder in Table 22. The comparison is done for a (n,k) RS encoder over GF(2m) and

the generator polynomial having r = n — k coefficients. The generator polynomial and the

primitive polynomial are both programmable.

6.4 Efficient Finite Field Serial/Parallel Multiplication

6.4.1 Bit-Serial Finite Field Multiplier

A new bit-serial/parallel finite field multiplier has been presented in [107] with standard

basis representation. This design is regular and well suited for VLSI implementation. As

compared to existing serial/parallel finite field multipliers, it has smaller critical path, lower

latency and can be easily pipelined. When it is used as a building block for large systems, it

can achieve more savings in hardware in the broadcast structures by utilizing sub-structure

sharing techniques which has been introduced in last section [106].

6.4.1.1 Multipier Architecture

The proposed design is semi-systolic with bi-directional data flow. It utilizes LSB first

implementation based on the following equation

C = AB mod f(x)

— (Ab0 mod f(%)) + (Abia mod f(x))

84

Multiplicand (m bits)

or

°s f ill ! f2 it

Multiplier (LSB first)

Product
(LSB first)

Figure 43: Bit Serial/Parallel Multiplication Circuit

+(Ab2a? mod f(x)) H

+(J46m_iam"1 mod f(x))

= b0A + bi(Aa mod f(x))

+b2{Aa2 mod f(x))-\

+brn_l(Aam-1 mod f(x)),

(Aak~l)a = Aak

fc-i

(62)

(63)

where C^ = ^ AbiOt1, and C^—0. Fig. 43 shows the overall architecture.
i=0

It contains three parts. The upper part is a linear feedback shift register (LFSR) with

/i's as the coefficients. The concepts and properties of LFSR can be found in [118]. Here

it is used to perform one-bit shifting followed by mod f(x) operation, which essentially

is multiplication by a. The middle part is partial product generator. The lower part is

accumulation part.

Bits of multiplicand are loaded to LFSR in parallel every m clock cycles. Multiplier bits

are loaded serially. Once one multiplication is complete, the final product is transfered to

85

Table 23: Comparison with Systolic-array based Architecture
Properties Wang et al. [119] Proposed
Resources 3m 2-input AND

m 3-input XOR
9m latches
m 2-to-l MUXes

2m 2-input AND
(2m-l) 2-input XOR

(4m+2) latches
4m 2-to-l MUXes

of Transistors 176m 104m+24
Latency 3m m+1
Critical Path 1 2-input AND

+ 1 3-input XOR
1 2-input AND

+ 1 2-input XOR

a parallel-in serial-out (PISO) register and shifted out serially. One control signal is needed

for I/O multiplexing and initializing accumulation latches once every m clock cycles.

6.4.1.2 Comparison with Other Designs

The comparison in this section is based on the following assumption.

• Multiplication is over GF(2m) and primitive polynomial f(x) is programmable.

• Both multiplicand and multiplier are assumed to be programmable for flexibility con-

siderations.

• 3-input XOR gate is implemented using two 2-input XOR gates.

The properties of the proposed serial/parallel multiplier are compared with one systolic

array realization [119] in Table 23. The proposed design has less number of latches and has

a smaller latency.

This design is also compared with existing serial/parallel architectures in Table 24. All

multipliers in Table 24 make use of broadcast signals. The I/O cost, including serial/parallel

converter and MUXes are ignored in Table 24 because all these three designs have the same

I/O cost. It is worth noting that the proposed design has smaller critical path and smaller

latency compared with [120]. The multiplier in [121] is based on MSB first algorithm, i.e.,

the multiplier bits are loaded serially with most significant bit first. The disadvantage is

that it performs multiplication by a and accumulation in serial every clock cycle, hence need

a 3-input Xor gate in accumulation part. Furthermore, when used as a building block for a

86

Table 24: Comparison with other serial/parallel Architectures
Properties [121] Hasan et al. [120] Proposed
Resources 2m MUXes

(m-1) 3-input XOR
1 2-input XOR
(4m+2) latches

(3m-1) 2-input AND
(3m-2) 2-input XOR
(4m+l) latches
1 switch

2m 2-input AND
(2m-l) 2-input XOR

(4m+2) latches

of transistors 88m+24 100m-2 88m+24
Latency m+1 2m+2 m+1
Critical Path 1 2-input AND

1 3-input XOR
1 2-input AND
+ f002 (m-1) 2-input XOR

1 2-input AND
+ 1 2-input XOR

Hardware Utilization 100% 50% 100%

larger system, the proposed multiplier can achieve less than linear increase in hardware as

the number of multipliers increases by substructure sharing. However, there is no straight-

forward way to apply substructure sharing technique to the multiplier in [121].

6.4.2 Generalized Serial/Parallel Finite Field Multiplication

In [107], two general digit-serial multiplication algorithms are presented. They can be used

to derive efficient bit-parallel algorithms for finite field serial/parallel multiplication. The

optimal primitive polynomials over GF(2m) (for 2 < m < 9) are provided which will generate

structures with minimum hardware complexity and relatively more flexibilities for feasible

digit-sizes. A multiplier over GF(2m) has been given as an example in [107] showing how

to derive efficient multiplier structures using the proposed algorithm. This multiplier has

less number of transistors, smaller critical path and consumes less power compared to the

existing semi-systolic architecture.

6.4.2.1 Digit-Serial Multiplication Algorithms

Assume digit-size = D. Let d denote the total number of digits and d
m—\ d—\

A = ^2 aia^ B = Yl BiaD\ where
i=0 i=0

\m/D]. Let

, for0<i<d-2

Bi = <

(D-\

]T bDi+ja
]

j=0
m-l-D(d-l)

Y, bpi+ja3 , for i = d-l

87

d-1

Then C = A ■ B mod f(x) = A ■ "Y^BioP1 mod f(x). We have the following two equations:

C = (AB0 + AaDBx + AoP ■ aDB2 + ■ ■ ■

+AaD(d-2) . aDßdi) mod ffä)

= (B0A + Bi(A-aD mod f(x))

+B2(AaD ■ aD mod f(x)) + •••

+Bd_1{AaD(d-2) • oP mod f{x)) mod f(x) (64)

for the least significant digit (LSD) first scheme and

C = (((((•••(((ABd_! mod f(x))■ aD + ABd_2) mod f(x))• oP

+ •••)• <*D) + ABi) mod f(x))aD + AB0) mod f(x) (65)

for the most significant digit (MSD) first scheme. Hence we have two algorithms for digit-

serial/parallel multiplication.

Algorithm 1 (LSD first)

1. C<°> = 0, for i = 0;

2. At ith iteration, (1 < i < d — 1)

(Aa^-V) ■ aD mod f(x) = AaDi mod f(x)

(AaW-VBi-!) + C^"1) = C« • (66)

m+D-2 m-1

where C« = £ CfoJ, AaDi mod f(x) = X>}V;
j=o j=o

3. At dih iteration,

AaW-V-B^ + CV-t^CW; (67)

4. Correction. Product of A and B is (C^ mod f(x)).

D

Algorithm 2 (MSD first)

88

1. C(°) = 0, for i = 0;

2. At ith iteration, (1 < i < d)

C(i) = (C(i-l) . aD + ABd_.) mod f(x^ (6g)

m—1

where C« = E^f^'-
i=o

D

Two essential steps in above algorithms are computing the partial product A • B{, and

computing the mod f(x) reduction. Computation of A ■ Bi can be performed using direct

Boolean AND and XOR operations at bit level. However, the computation of mod f(x)

operation is highly dependent on the primitive polynomial f(x) and is much more involved.

An algorithm for simplifying this mod f(x) operation is provided.
fc-i

Theorem 1. Assume f(x) = xm + xk + ^fox1. For t < m - 1 - k, the coordinates of
x=0

am+t can be obtained by the following equation,

am+t mod f(x) = (am mod f(x))- a1

= (ak + X>Ö-oA (69)
i=0

Theorem 2. For digit-size D < m — k, the mod f(x) reduction operation for digit-serial

multiplication with digit-size D can be performed as follows:

k-i

am+t mod f(x) = {ak + J£/fi<xi)-atJort<D-l. (70)
i=0

Therefore, according to Theorem 2, when D < m — k, the mod f(x) operation in step 2

and 4 of Algorithm 1 and step 2 of algorithm 2 can be accomplished by simply taking the

higher order digits (HD, from bit m to bit m + D — 1) of the partial product, multiplying
A;-l

it by (ak + ^2fi(xl) and adding it to lower order digits (LD, from bit 0 to bit m — 1) of the
i=0

partial product. Then the highest degree of the result will be guaranteed to be less than m.

It needs to be pointed out that for some finite field GF(2m) over which primitive poly-

nomial of the form xm + x + 1 exists, the digit-size D can vary from 1 to m instead of from

1 to m — 1.

89

Table 25: List of Optimal polynomials over GF(2m)
finite field prim, polynomial feasible digit-size
m=2 f(x) =X2 +X + 1 1<D<2
ra=3 f(x) = XS +X + 1 1<D<3
ra=4 f(x) = xA + x + 1 1<D<4
ra=5 f(x) = xb + x2 + 1 1<D<3
m=6 f(x) = xti+x + l 1 <D<6
m=7 f(x) =x7 +X + 1 1 <D<7
m=8 f(x) = x8 + xA + x6 + x2 + 1 1 <D<4
m=9 f(x) = x9 + x + 1 1<D<9

The optimal primitive polynomials over GF(2m), for 2 < m < 9, are given in Table 25.

Optimal primitive polynomials are chosen keeping in mind the simplicity of architectures

and flexibilities on feasible digit-sizes when the proposed algorithms are used.

6.4.2.2 Multiplier over GF(28)

Let f(x) = x8 + xA + x3 + x2 +1 be the primitive polynomial over GF(2S) and a be the root

of f(x). A multiplier has been derived using the proposed LSD first algorithm. The overall

structure as well as basic cells of GF(28) multiplier are shown in Fig. 44. Here the multiplier

is in digit-parallel form, from which the corresponding digit-serial architecture can be easily

derived.

It is worth noting that more substructure sharing can be achieved when the mod f(x)

operation is performed in the proposed way, which is illustrated by the shaded regions in

Fig. 44.

This multiplier has been compared with the existing semi-systolic architecture [105] under

the assumption that both multipliers are over GF(28) with primitive polynomial f(x) =

x8 + x4 + x3 + x2 + 1. A hierarchical energy analysis tool HEAT [122] was used to compute

the average power for the two multipliers (with and without pipelining). It was found that the

best case for semi-systolic multiplier over GF{28) was the one with 4-bit level pipelining, the

best case for proposed multiplier was the one without pipelining. Therefore, the comparison

was made between the two multipliers for both non-pipelining and 4-bit pipelining cases. All

results are summarized in Table 26.

90

BO

0 A

it
<£> MAC

PPO

Bl.

11-','

<£> MAC

4 11

(70:0

MOD-COR

=f C(7:0)

® Boolean AND

<S> Boolean XOR

<Sr-a4,
AINC

7 106 5

' C7 TC«

'
From previous step |

Al | AO,
Bi

J5< \ 1 (><

1 MSD LSO\' /MSD LSD '
G5

P(10:S) T Pf7:JJ W«

t
AINC

l
i; i, d d

I

IAO."

iff* (10:0)
MOD-COR

i:
£5.

3 «8 2 /OS S>

L 1, 1,
c< YCJ tc2 t« t co

1 C(7:0)

Figure 44: digit-Serial/Parallel Multiplication Circuit over GF(28)

91

Table 26: Comparison between proposed multiplier and semi-systolic multiplier for m=8
Semi-systolic [105] Proposed

Properties 4-bit pipe. non pipe. 4-bit pipe. non pipe.
Resources 64 2-input AND

80 2-input XOR
24 latches

64 2-input AND
80 2-input XOR
8 latches

64 2-input AND
73 2-input XOR
38 latches

64 2-input AND
73 2-input XOR
8 latches

trans. 1280 1024 1448 968
Latency 2 elk cycles 1 elk cycles 3 elk cycles 1 elk cycles
Critical Path 1 2-input AND

4 2-input XOR
1 2-input AND
8 2-input XOR

1 2-input AND
3 2-input XOR

1 2-input AND
7 2-input XOR

Power Consump. (ßW) 889 1198 708.18 578.56

From Table 26 we can conclude that the proposed multiplier without pipelining gives the

best overall performance.

7 Order-Configurable, Power Efficient FIR Filters

With the recent explosion of portable and wireless real-time, digital signal processing ap-

plications, the demand for low-power circuits has increased tremendously [123]-[125]. This

demand has been satisfied by utilizing ASICs; however, ASICs allow for very little reconfig-

urability. Another new trend is the need to minimize the design cycle time. Therefore many

programmable logic devices (PLDs) (e.g., field-programmable gate arrays) are being utilized

for prototyping and even production designs [126]. The main disadvantage of these PLDs is

that they suffer from slow performance because their architectures have been optimized for

random logic and not for digital signal processing implementations. In this paper, a solu-

tion for the implementation of high-speed, low-power, and order-configurable finite impulse

response (FIR) filters is presented. This architecture was designed by applying the folding

and the retiming transformations and the filter order can vary from 1 to 31 using one chip.

Multiple chips can be cascaded to achieve higher order FIR filters.

This new architecture consists of two parts: a configurable processor array (CPA) [127]

and a phase locked loop (PLL). The CPA contains the multiply-add functional units and the

PLL is designed to automatically vary the internal voltage to match the desired throughput

rate and minimize the peak power dissipated by the CPA. We utilize a novel programmable

divider and a voltage level shifter in conjunction with the clock to control the internal supply

92

voltage. The CPA portion contains folded multiply-add (FMA) units which operate in two

phases: the configuration phase where the processor array is programmed for a specific

sample-rate and filter-order, and the execution phase where the processor array performs

the desired filtering operation. We also implemented novel programmable subcircuits that

provides the order configurability of the architecture. This design has been implemented

using Mentor Graphics tools and 1.2/xm CMOS technology.

In section 7.1, we briefly describe how the CPA is derived and the design parameters. In

section 7.2, the design of the CPA components are described in more detail and section 7.3

describes the PLL components. Simulation results are provided in section 7.4 to demonstrate

the effectiveness of the design and the power savings.

7.1 Background

Consider the transpose-form architecture of a 6-tap FIR filter that realizes the function

y(n) = a0x(n) + <nx(n - 1) + a2x{n - 2) + a3x{n - 3) + a4x(n - 4) + a5x(n - 5).

If we implement this 6-tap filter using 2 multiply-add functional units, which corresponds

to using a folding factor of 3 [128], (i.e., 3 multiply-add operations are folded to the same

functional unit), we will have a folded architecture shown in Fig. 45. This architecture

consists of folded multiply-add units (FMA). The inputs and outputs (x(n) and y(n)) to

each FMA will hold the same sample data for three clock cycles before changing to the next

sample. To completely pipeline the folded architecture, additional delays are introduced

x(n)

y(n)

Figure 45: The folded architecture of the 6-tap FIR filter (folding factor = 3).

at the input (x(n)) by using the retiming transformation [129] along with pipelining. This

93

modified structure is now periodic with a period of three clock cycles (or 3-periodic). This

technique can be applied to any JV-tap FIR filter for any folding factor, p.

To achieve programmability and the CPA architecture, we convert the fixed number of

registers in Fig. 45 into programmable delays that are constrained by a maximum folding

factor pmax as shown in Fig. 46. To implement an iV-tap filter using this architecture, a

total of M (where M = \N/p\) FMA modules are required. This CPA architecture is a

periodic system with period p; therefore it is designed to produce filter outputs from module

FMA0 in clock cycles (t mod p) = 0 (where t = time in clock cycles) and hold it for p cycles.

Note that mux4 in Fig. 46 is only required for module FMA0 to hold the filter output

data for p clock cycles and is redundant in the other FMAj modules (j ^ 0). These other

multiplexers can be replaced by a single delay along with sharing of the (p-1) registers in the

feedback accumulation path. The switching times of all of the programmable multiplexers

are summarized in Table 27.

x(n)

y(n)

i^ZP.

% Accumulation Pith

((•• (~

5?M+)
Accumulation Path

I L__ i mi

FMA„., iff
Accumulation Path

Figure 46: A configurable processor array (CPA) for N-tap FIR filters which is
p-periodic.

mux# mux definition
1
2
3
4

at in clock cycle ((p - l)(j + 1) + i) mod p
/ in clock cycle ((p - l)(j + 1) - 1) mod p
/ in clock cycle ((p - l)(j + 1) - 1) mod p

/ in clock cycle ((p - l)(j + 1)) mod p

Table 27: Multiplexer definitions

Before implementing this general structure, we had to set values for Nmax and pmax.

We chose to set Nmax (maximum number of taps) to 32 because an FIR filter will provide

94

good performance for filter lengths around 32. We set pmax (maximum folding factor) to

8 because we wanted pmax to be a power of 2 and desired greater flexibility with minimal

control overhead. With Nmax = 32 and pmax = 8, a total of 4 FMA modules needed to be

integrated onto a single chip.

7.2 Configurable Processor Array

The 8-bit parallel multiplier is a key part of the CPA module because it determines the

critical path of the system. We chose to utilize the Baugh-Wooley algorithm for the multiplier

because the control overhead is smaller than other algorithms (e.g., Booth recoding) and the

full-adders are not wasted on sign extensions. This algorithm generates a matrix of partial

product bits and a fast multi-operand adder [130] was employed to accumulate these partial

products. To minimize the critical path in the accumulation path, we used the Wallace tree

approach [131]. In the CPA design of Fig. 46, we see that the feedback accumulation path

requires p—l synchronization registers. Because p is a programmable parameter, p-1 can

range from 0 to 7 (pmax - 1), we implemented them as a programmable delay line as shown

in Fig. 47. Each delay line contains seven 8-bit registers, seven 8-bit multiplexers, and one

control unit. The control unit is a simple decoder, that converts p into seven control bits

and each control bit directs the data through or around a delay.

P<2:0) [p<2:0> decode<6:0)

Control

din(7:0) £>-

«o
8 bit reg 8 bit reg

8 bit mux

8 bit reg

Figure 47: p—l programmable delay line.

The multiplexers mux2, mux3 and mux4 shown in Fig. 46 are 2-to-l p-periodic multi-

plexers. Their functions are to select input I in one of p clock-cycles. These multiplexers use

a 3-bit ([log2(pmai)]-bit) binary counter with asynchronous reset and synchronous parallel

load. In addition, two 3-bit registers and a comparator are used in the control circuitry

of each multiplexer. One register holds p and the second holds a programmed clock cycle

95

value ranging from 0 to p - 1. When the counter output equals the held clock cycle value,

the controller allows the data on / to pass to the output. The final multiplexer in Fig. 46,

muxl, is a programmable p-to-1 p-periodic multiplexer which consists of one 8-bit 8-to-l

multiplexer and one control unit. At each counter state one of p control lines will be high

to activate the p-to-1 multiplexer.

7.3 Phase Locked Loop

Reducing the supply voltage of VLSI chips is commonly used to save power; however, it also

slows down the critical path of the circuit. If the supply voltage is reduced too much, the

critical path will become too slow to assure correct functionality of the design. Therefore we

designed a phase locked loop (PLL) circuit that automatically controls the internal supply

voltage to provide the lowest voltage allowable while still achieving the throughput required

for the application [132]. The PLL consists of a phase detector, a charge pump with a

loop filter, a voltage controlled oscillator (VCO), a programmable divider, and a voltage

level shifter. All of these components form a feedback circuit that automatically adjusts the

voltage level as required by the programmed parameters and the clock speed.

The schematic of the programmable divider used in the PLL is shown in Fig. 48. To

achieve a 50% duty cycle, we had to accommodate three possible cases of p. If p is 1, the

input clock simply passes through the divider without any change. For even p, the divider

toggles its output every p/2 input clock cycles by using a programmable counter. When p

is odd (p > 1), the divider must alter the output every (p - l)/2 + 1/2 input clock cycles.

This means the output may toggle at the rising edge and falling edge of the input clock.

To detect the edge where the divider should toggle its output, we utilize two programmable

counters; one to detect rising edges, and the other to detect falling edges. These counters

generate a series of pulses representing edges and an OR gate combines them into a single

pulse. Finally the Toggle component alters the output according to the pulses generated by

the OR gate. The two multiplexers in Fig. 48 select the appropriate clock output from the

three cases depending on the value of p.

The function of the voltage level shifter (VLS) is to raise the output voltage of the loop

filter to a usable level in the CPA. By sizing transistors in the VLS, we can adjust the

96

elk [Z>
pl(2:0) O

Figure 48: programmable divider

amount of voltage that will be shifted (known as the voltage shift level). However, the power

consumption of the voltage level shifter will increase with an increase in the the voltage

shift level. So there is a tradeoff between power consumption and the voltage shift level.

Our experiments have shown that a shift of 0.6V provided enough internal voltage to safely

operate the CPA within the design specifications while minimizing the power consumption.

7.4 Simulation

Using Mentor Graphics tools, simulations determined the critical path of the design to be

7ns at the schematic level which means that it is safe to operate the architecture up to 100

MHz. The CPA was designed to be operated with sample rates in the range of 10MHz to

100MHz, which corresponds to an internal clock rate of 1.125MHz (with p = 8) to 100MHz

(with p = 1). This range of frequencies corresponds to an internal power supply range of

4.5V to 2.0V. Efficient power consumption is one of the important features of our design

and Table 28 shows the power consumptions in mW for each CPA component at different

frequencies and power supplies. From Table 28, we can see that at 100MHz, the power
consumption of the CPA without the PLL and using a 5V supply voltage will consume

1101.48mW. By utilizing the PLL supply voltage for 100MHz (4.5V) the power consumption

can be reduced to 863.32mW. At 10MHz, we can save 95.37mW by using the PLL supply

voltage automatically generated for 10MHz verses a 5V supply. Of course the PLL will

consume some power of its own and results of power consumption simulations for the various

components of the PLL are listed in Table 29. From Table 29, we can see that even if we

include the power consumption of the PLL, we will still save 210.06mW at 100MHz, and

97

Component 5V, 100MHz 4.5V, 100MHz 5V, 10MHz 2.0V, 10MHz

multiplier 140.6 112.5 14.23 1.98
pmux(p-l) 5.17 3.85 1.14 0.050

adder 18.8 16.52 2.18 0.28
pldelay 60 43.2 6.03 0.77

pmux(2-l) 11.6 9.5 0.65 0.063
1 delay 8 5.63 0.9 0.099

FIR(digital) 1101.48 863.32 109.24 13.87

Table 28: Power consumption for digital parts of FIR filter in mW

81.79mW at 10MHz.

Component phase detector
charge pump

loop filter VCO level shifter divider total

100MHz 8.3 7.55 14.875 0.9 1.345 28.1
10MHz 2.68 0.355 3.335 0.999 1.34 13.58

Table 29: Power consumption for PLL parts in mW

8 List of Publications Supported by RASSP

• C.Y. Wang, and K.K. Parhi, "The MARS High-Level DSP Synthesis System", in

VLSI Design Methodologies for Digital Signal Processing Architectures, edited by M.

Bayoumi, pp. 169-205, Kluwer Academic Press, 1994

• S. Jain and K.K. Parhi, "Efficient Power Based Galois Field Arithmetic Architectures",

in VLSI Signal Processing VII, pp. 306-315, IEEE Press, Oct. 1994 (Proc. of the

Seventh IEEE VLSI Signal Processing Workshop, La Jolla, CA)

• K.K. Parhi, "High-Level Transformations for DSP Synthesis", Chapter 8.1 in Microsys-

tems Technology for Multimedia Applications: An Introduction, edited by B. Sheu et

al., IEEE ISCAS-95 Tutorial Book, pp. 575-587, IEEE Press, 1995

• C.-Y. Wang and K.K. Parhi, "High-Level DSP Synthesis", Chapter 8.4 in Microsystems

Technology for Multimedia Applications: An Introduction, edited by B. Sheu et al,

98

IEEE ISCAS-95 Tutorial Book, pp. 615-627, IEEE Press, 1995

• T.C. Denk and K.K. Parhi," Systematic Design of Architectures for M-ary Tree-Structured

Filter Banks", pp. 157-166, in VLSI Signal Processing VIII, IEEE Press, October 1995

(Proc. of the 1995 IEEE Workshop on VLSI Signal Processing, Sakai, Japan)

• K. Ito and K.K. Parhi," Register Minimization in Cost-Optimal Synthesis of DSP Ar-

chitectures", pp. 207-216, in VLSI Signal Processing VIII, IEEE Press, October 1995

(Proc. of the 1995 IEEE Workshop on VLSI Signal Processing, Sakai, Japan)

• C.-Y. Wang, and K.K. Parhi, "High-Level DSP Synthesis using Concurrent Transfor-

mations, Scheduling, and Allocation", IEEE Transactions on Computer Aided Design,

14(3), pp. 274-295, March 1995

• C.-Y. Wang, and K.K. Parhi, "Resource Constrained Loop List Scheduler for DSP

Algorithms", Journal of VLSI Signal Processing, 11(1/2), pp. 75-96, October 1995

• K. Ito and K.K. Parhi, "Determining the Minimum Iteration Period of an Algorithm",

Journal of VLSI Signal Processing, 11(3), pp. 229-244, December 1995

• T.C. Denk and K.K. Parhi, "Lower Bounds on Memory Requirements for Statically

Scheduled DSP Programs", Journal of VLSI Signal Processing, June 1996

• T.C. Denk and K.K. Parhi, "VLSI Architectures for Lattice Structure Based Orthonor-

mal Discrete Wavelet Transforms", IEEE Transactions on Circuits and Systems, Part

- II: Analog and Digital Signal Processing, to appear

• S. Jain and K.K. Parhi, "Efficient VLSI Architectures for Finite Field Arithmetic",

Submitted to IEEE Trans, on VLSI Systems, April 1995

• T.C. Denk and K.K. Parhi, "Synthesis of Folded Pipelined Architectures for Multirate

DSP Algorithms", Submitted to IEEE Trans, on VLSI Systems, November 1995

• K. Ito and K.K. Parhi, "A Generalized Technique for Register Counting and its Ap-

plication to Cost-Optimal DSP Architecture Synthesis", Submitted to Journal of VLSI

Signal Processing, Jan. 1996

99

• K. Ito, L.E. Lucke and K.K. Parhi, "ILP Based Cost-Optimal DSP Synthesis with

Module Selection and Data Format Conversion", Submitted to IEEE Trans, on VLSI

Systems, Feb. 1996

• Y.-N. Chang, C.Y. Wang, and K.K. Parhi, "Loop-List Allocation and Scheduling with

using Heterogeneous Functional Units", Submitted to Journal of VLSI Signal Process-

ing, Feb. 1996

• T.C. Denk and K.K. Parhi, "Exhaustive Scheduling and Retiming of Digital Signal

Processing Systems", Submitted to IEEE Trans, on Circuits and Systems, Part II:

Analog and Digital Signal Processing, May 1996

• T.C. Denk and K.K. Parhi, "Two-Dimensional Retiming", Submitted to IEEE Trans,

on VLSI Systems, July 1996

• T.C. Denk, and K.K. Parhi, "Calculation of Minimum Number of Registers in 2-D

Discrete Wavelet Transforms using Lapped Block Processing", Proc. of 1994 IEEE

Int. Symp. on Circuits and Systems, pp. 3.77-3.80, May 30 - June 2, 1994, London

• K.K. Parhi and T.C. Denk, "VLSI Discrete Wavelet Transform Architectures", in Proc.

of the 1st ARPA RASSP Conference, pp. 154-170, Aug. 15-18, 1994, Arlington (VA)

• T.C. Denk, and K.K. Parhi, "Architectures for Lattice Structure Based Orthonormal

Discrete Wavelet Transforms", Proc. of the 1994 Int. Conf. on Application Specific

Array Processors, pp. 259-270, San Francisco, August 1994

• K. Ito, L.E. Lucke and K.K. Parhi, "Module Selection and Data Format Conversion

for Cost-Optimal DSP Synthesis", Proc. of the IEEE/ACM Int. Conf. on Computer

Aided Design, pp. 322-329, Nov. 6-10, 1994, San Jose (CA)

• K. Ito and K.K. Parhi, "Determining the Iteration Bound of Data-Flow Graphs", Proc.

of the IEEE Asia-Pacific Conference on Circuits and Systems, pp. 163-168, Dec. 5-8,

1994, Grand Hotel, Taipei

100

• S. Jain and K.K. Parhi, "A Low-Latency Standard Basis GF(2m) Multiplier", in Proc.

of the 1995 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 2747-

2750, May 1995, Detroit (MI)

• C.-Y. Wang and K.K. Parhi, "MARS: A High-Level DSP Synthesis Tool Integrated

within the Mentor Graphics Environment", in Proc. of Mentor Graphics Users' Group

Annual Conference, October 22-27, 1995, Portland

• Y.N. Chang, C.Y. Wang and K.K. Parhi, "High-Level DSP Synthesis with Heteroge-

neous Functional Units using the MARS-II System", Proc. of the 1995 Asilomar Conf.

on Signals, Systems and Computers, pp. 109-116, Pacific Grove (CA), November 1995

(invited talk)

• Y.-N. Chang, C.Y. Wang, and K.K. Parhi, "Loop List Scheduling for Heterogeneous

Functional Units", Proc. of Sixth Great Lakes Symp. on VLSI, pp. 2-7, March 1996,

Ames (Iowa)

• S.K. Jain and K.K. Parhi, "Efficient Standard Basis Reed-Solomon Encoder", in Proc.

of 1996 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 3287-3290,

May 1996, Atlanta

• T.C. Denk, M. Majumdar and K.K. Parhi, "Two-Dimensional Retiming with Low

Memory Requirements", in Proc. of 1996 IEEE Int. Conf. on Acoustics, Speech and

Signal Processing, pp. 3330-3333, May 1996, Atlanta

• A. Shalash and K.K. Parhi, "Comparison of Discrete Multitone and Carrierless AM/PM

Techniques for Line Equalization", in Proc. of 1996 IEEE Int. Symp. on Circuits and

Systems, pp. II: 560-563, May 1996, Atlanta

• T.C. Denk and K.K. Parhi, "A Unified Framework for Characterizing Retiming and

Scheduling Solutions", in Proc. of 1996 IEEE Int. Symp. on Circuits and Systems,

pp. 568-571, May 1996, Atlanta

101

L.L. Song and K.K. Parhi, "Efficient Finite Field Serial/Parallel Multiplication", Proc.

of the 1996 Int. Conf. on Applications-specific Systems, Architectures, and Processors,

Chicago, August 1996

C. Xu, C.-Y. Wang and K.K. Parhi, "Order-Configurable Programmable Power-Efficient

FIR Filters ", Proc. of the 3rd International Workshop on Image and Signal Processing

Advances in Computational Intelligence, UK, November 1996

References
1] M. C. McFarland, A. C. Parker, and R. Camposano, "The high-level synthesis of digital

systems," Proceedings of the IEEE, vol. 78, pp. 301-318, February 1990.

2] C.-Y. Wang and K. K. Parhi, "High-level DSP synthesis," in Microsystems Technology for
Multimedia Applications (B. Sheu, M. Ismail, E. Sanchez-Sinencio, and T. H. Wu, eds.),
ch. 8.2, pp. 615-627, IEEE Press, 1995.

3] R. Camposano and W. Wolf, eds., High Level VLSI Synthesis. Kluwer Academic Publishers,
1991.

4] M. A. Bayoumi, ed., VLSI Design Methodologies for Digital Signal Processing Architectures.
Kluwer Academic Publishers, 1991.

5] J. Vanhoof, I. Bolsens, G. Goosens, H. J. De Man, and K. Rompaey, High Level Synthesis
for Real-Time Digital Signal Processing. Kluwer Academic Press, 1993.

6] H. De Man et. al., "Architecture driven synthesis techniques for VLSI implementation of DSP
algorithms," Proceedings of the IEEE, pp. 319-335, February 1990.

7] L.-F. Chao, A. LaPaugh, and E. Sha, "Rotation scheduling," in Design Automation Confer-
ence, pp. 566-572, June 1993.

8] T. A. Ly and J. T. Mowchenko, "Applying simulated evolution to high-level synthesis," IEEE
Transactions on Computer-Aided Design, pp. 389-409, March 1993.

9] C.-T. Hwang and Y.-C. Hsu, "Zone scheduling," IEEE Transactions on Computer-Aided
Design, vol. 12, pp. 926-934, July 1993.

[10] J. Biesenack et al, "The Siemens high-level synthesis system callas," IEEE Transactions on
VLSI Systems, vol. 1, September 1993.

[11] I.-C. Park and C.-M. Kyung, "FAMOS: An efficient scheduling algorithm for high-level syn-
thesis," IEEE Transactions on Computer-Aided Design, vol. 12, pp. 1437-1448, October
1993.

[12] T.-F. Lee, A. C.-H. Wu, D. D. Gajski, and Y.-L. Lin, "A transformation-based method for
loop folding," IEEE Transactions on Computer-Aided Design, vol. 13, pp. 439-450, April
1994.

102

13] S. Amelia! and B. Kaminska, "Functional synthesis of digital systems with TASS," IEEE
Transactions on Computer-Aided Design, vol. 13, pp. 537-552, may 1994.

14] C.-Y. Wang and K. K. Parhi, "High-level synthesis using concurrent transformations, schedul-
ing, and allocation," IEEE Transactions on Computer-Aided Design, vol. 14, pp. 274-295,
March 1995.

15] C.-Y. Wang and K. K. Parhi, "Resource-constrained loop list scheduler for DSP algorithms,"
Journal of VLSI Signal Processing, vol. 11, pp. 75-96, October/November 1995.

16] B. S. Haroun and M. I. Elmasry, "Architecural synthesis for DSP silicon compilers," IEEE
Transactions on Computer-Aided Design, vol. 8, pp. 431-447, April 1989.

17] J. Rabaey, C.-M. Chu, P. Hoang, and M. Potkonjak, "Fast prototyping of datapath-intensive
architectures," IEEE Design and Test, vol. 8, pp. 40-51, June 1991.

18] L. Ramachandran and D. D. Gajski, "An algorithm for component selection in performanced
optimized scheduling," in International Conference on Computer-Aided Design, (Santa Clara,
CA), pp. 92-95, November 1991.

19] A. H. Timmer and J. A. Jess, "Execution interval analysis under resource constraints," in
International Conference on Computer-Aided Design, pp. 454-459, November 1993.

20] M. Ishikawa and G. De Micheli, "A module selection algorithm for high-level synthesis," in
International Symposium on Circuits and Systems, (Singapore), pp. 1777-1780, June 1991.

21] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, "A formal approach to the scheduling problem in
high-level synthesis," IEEE Transactions on Computer-Aided Design, vol. 10, pp. 464-475,
April 1991.

22] C. Hwang et al, "PLS: Scheduler for pipeline synthesis," IEEE Transactions on Computer-
Aided Design, vol. 12, pp. 1279-1286, September 1993.

23] C. H. Gebotys and M. Elmasry, "Global optimization approach for architecture synthesis,"
IEEE Transactions on Computer-Aided Design, vol. 12, pp. 1266-1278, September 1993.

24] C. H. Gebotys, "An optimization approach to the synthesis of multichip architectures," IEEE
Transactions on VLSI Systems, vol. 2, pp. 11-20, March 1994.

25] K. Ito, L. E. Lucke, and K. K. Parhi, "Module selection and data format conversion for
cost-optimal DSP synthesis," in International Conference on Computer-Aided Design, (San
Jose, CA), pp. 322-329, November 1994.

26] K. Ito and K. K. Parhi, "Register minimization in cost-optimal synthesis of dsp architectures,"
in VLSI Signal Processing VIII (T. Nishitani and K. K. Parhi, eds.), pp. 207-216, IEEE Press,
1995. (Proc. of the 1995 IEEE Workshop on VLSI Signal Processing, Osaka, Japan).

27] E. A. Lee and D. G. Messerschmitt, "Static scheduling of synchronous data flow programs
for digital signal processing," IEEE Transactions on Computers, vol. 36, pp. 24-35, January
1987.

28] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Co., 1979.

103

[29] R. I. Hartley and J. R. Jasica, "Behavioral to structural translation in a bit-serial silicon
compiler," IEEE Transactions on Computer-Aided Design, vol. 7, pp. 877-886, August 1988.

[30] K. K. Parhi and D. G. Messerschmitt, "Static rate-optimal scheduling of iterative data-flow
programs via optimum unfolding," IEEE Trans, on Computers, vol. 40, pp. 178-195, February
1991.

[31] M. Renfors and Y. Neuvo, "The maximum sampling rate of digital filters under hardware
speed constraints," IEEE Transactions on Circuits and Systems, pp. 196-202, 1981.

[32] E. Reingold et al, Combinatorial Algorithms - Theory and Practice. Prentice Hall, 1977.

[33] C. H. Gebotys and M. I. Elmasry, "Global optimization approach for architecture synthesis,"
IEEE Trans. Computer-Aided Design, vol. CAD-12, pp. 1266-1278, Sept. 1993.

[34] C. H. Gebotys and M. I. Elmasry, "Optimal synthesis of high-performance architectures,"
IEEE Journal of Solid-State Circuits, vol. 27, pp. 389-397, Mar. 1992.

[35] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, "A formal approach to the scheduling problem in
high level synthesis," IEEE Trans. Computer-Aided Design, vol. CAD-10, pp. 464-475, Apr.
1991.

[36] P. G. Paulin and J. P. Knight, "Force-directed scheduling for the behavioral synthesis of
asic's," IEEE Trans. Computer-Aided Design, vol. CAD-8, pp. 661-679, June 1989.

[37] C.-Y. Wang and K. K. Parhi, "Loop list scheduler for dsp algorithms under resource con-
straints," in Proc. IEEE Int. Symp. Circuits and Systems, (Chicago), pp. 1662-1665, May
1993.

[38] C. H. Gebotys and R. J. Gebotys, "Optimal mapping of dsp applications to architectures,"
in Proc. 26th Hawaii Int. Conf. System Sciences, pp. 116-123, 1993.

[39] R. Hartley and P. Corbett, "Digit-serial processing techniques," IEEE Trans. Circuits Syst.,
vol. CAS-37, pp. 707-719, June 1990.

[40] K. K. Parhi, "A systematic approach for design of digit-serial processing architecture," IEEE
Trans. Circuits Syst., vol. CAS-38, pp. 358-375, Apr. 1991.

[41] K. K. Parhi, "Systematic synthesis of dsp data format converters using life-time analysis and
forward-backward register allocation," IEEE Trans. Circuits Syst.-II: Analog and Digital
Signal Processing, vol. CAS-39, pp. 423-440, July 1992.

[42] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User's Guide, Release 2.25. South San
Francisco, CA: The Scientific Press, 1992.

[43] K. K. Parhi, "Algorithm transformation techniques for concurrent processors," Proc. of the
IEEE, vol. 77, pp. 1879-1895, Dec. 1989.

[44] E. A. Lee and D. G. Messerschmitt, "Static scheduling of synchronous data flow program for
digital signal processing," IEEE Trans. Computers, vol. C-36, pp. 24-35, Jan. 1987.

[45] M. Renfors and Y. Neuvo, "The maximum sampling rate of digital filters under hardware
speed constraints," IEEE Trans. Circuits Syst., vol. CAS-28, pp. 196-202, Mar. 1981.

104

[46] D. A. Schwartz and I. T. P. Barnwell, "A graph theoretic technique for the generation of
systolic implementations for shift invariant flow graphs," in Proc. of the 1984 IEEE ICASSP,
(San Diego, CA), Mar. 1984.

[47] K. K. Parhi and D. G. Messerschmitt, "Static rate-optimal scheduling of iterative data-flow
programs via optimum unfolding," IEEE Trans. Computers, vol. C-40, pp. 178-195, Feb.
1991.

[48] D. Y. Chao and D. Y. Wang, "Iteration bounds of single-rate data flow graphs for concurrent
processing," IEEE Trans. Circuits Syst.-I, vol. CAS-40, pp. 629-634, Sept. 1993.

[49] S. H. Gerez, S. M. Heemstra de Groot, and 0. E. Herrmann, "A polynomial-time algorithm
for the computation of the iteration-period bound in recursive data-flow graphs," IEEE Trans.
Circuits Syst.-I, vol. CAS-39, pp. 49-52, Jan. 1992.

[50] R. M. Karp, "A characterization of the minimum cycle mean in a digraph," Discrete Mathe-
matics, vol. 23, pp. 309-311, 1978.

[51] S. Y. Kung, H. J. Whitehouse, and T. Kailath, VLSI and Modern Signal Processing. Engle-
woodCliffs, NJ: Prentice Hall, 1985.

[52] J.-G. Chung and K. K. Parhi, "Pipelining of lattice iir digital filters," IEEE Trans. Signal
Processing, vol. SP-42, pp. 751-761, Apr. 1994.

[53] L.-F. Chao and A. LaPaugh, "Rotation scheduling: A loop pipelining algorithm," in Proc. of
ACM/IEEE Design Automation Conference, pp. 566-572, 1993.

[54] T. C. Denk and K. K. Parhi, "A unified framework for characterizing retiming and scheduling
solutions," in Proceedings of IEEE ISC AS, vol. 4, (Atlanta, GA), pp. 568-571, May 1996.

[55] T. C. Denk and K. K. Parhi, "Exhaustive scheduling and retiming of digital signal processing
systems," submitted to IEEE Transactions on Circuits and Systems-II: Analog and Digital
Signal Processing, May 1996.

[56] J. Monteiro, S. Devadas, and A. Ghosh, "Retiming sequential circuits for low power," in
Proceedings of IEEE Int. Conf. on Computer Aided Design, pp. 398-402, 1993.

[57] C. Leiserson, F. Rose, and J. Saxe, "Optimizing synchronous circuitry by retiming," Third
Caltech Conference on VLSI, pp. 87-116, 1983.

[58] S. Simon, E. Bernard, M. Sauer, and J. Nossek, "A new retiming algorithm for circuit design,"
in Proceedings of IEEE ISC AS, (London, England), May 1994.

[59] M. Potkonjak and J. Rabaey, "Retiming for scheduling," in VLSI Signal Processing IV,
pp. 23-32, November 1990.

[60] T. C. Denk and K. K. Parhi, "Lower bounds on memory requirements for statically scheduled
DSP programs," to appear in Journal of VLSI Signal Processing, June 1996.

[61] N. L. Passos, E. H.-M. Sha, and S. C. Bass, "Optimizing DSP flow graphs via schedule-based
multidimensional retiming," IEEE Transactions on Signal Processing, vol. 44, pp. 150-155,
January 1996.

105

[62] N. Passos and E. H.-M. Sha, "Full parallelism in uniform nested loops using multi-dimensional
retiming," in Proc. Int'l Conf. on Parallel Processing, 1994.

[63] T. C. Denk and K. K. Parhi, "Two-dimensional retiming," submitted to IEEE Transactions
on VLSI Systems, July 1996.

[64] S. G. Mallat, "Multifrequency channel decompositions of images and wavelet models," IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 37, pp. 2091-2110, December
1989.

[65] I. Daubechies, "Orthonormal bases of compactly supported wavelets," Comm. in Pure and
Applied Math., vol. 41, pp. 909-996, November 1988.

[66] G. Strang, "Wavelets and dilation equations: A brief introduction," 57AM Rev., vol. 31,
pp. 614-627, December 1989.

[67] M. Vetterli and C. Herley, "Wavelets and filter banks: Theory and design," IEEE Transac-
tions on Signal Processing, vol. 40, pp. 2207-2232, September 1992.

[68] O. Rioul and M. Vetterli, "Wavelets and signal processing," IEEE Signal Processing Maga-
zine, pp. 14-38, October 1991.

[69] C. Chakrabarti, M. Vishwanath, and R. Owens, "Architectures for wavelet transforms," in
Proceedings of IEEE ICASSP, (Detroit, MI), 1995.

[70] K. K. Parhi, C.-Y. Wang, and A. P. Brown, "Synthesis of control circuits in folded pipelined
DSP architectures," IEEE Journal of Solid-State Circuits, vol. 27, pp. 29-43, January 1992.

[71] K. K. Parhi, "A systematic approach for design of digit-serial signal processing architectures,"
IEEE Transactions on Circuits and Systems, vol. 38, pp. 358-375, April 1991.

[72] G. Knowles, "VLSI architecture for the discrete wavelet transform," Electronics Letters,
vol. 26, pp. 1184-1185, July 1990.

[73] K. K. Parhi and T. Nishitani, "VLSI architectures for discrete wavelet transforms," IEEE
Transactions on VLSI Systems, vol. 1, pp. 191-202, June 1993.

[74] C. Chakrabarti and M. Vishwanath, "Efficient realizations of the discrete and continuous
wavelet transforms: From single chip implementations to mappings on SIMD array comput-
ers," IEEE Transactions on Signal Processing, vol. 43, pp. 759-771, March 1995.

[75] T. C. Denk and K. K. Parhi, "Systematic design of architectures for M-ary tree-structured
filter banks," in VLSI Signal Processing, VIII (T. Nishitani and K. Parhi, eds.), pp. 157-166,
IEEE Press, October 1995.

[76] T. C. Denk and K. K. Parhi, "Synthesis of folded pipelined architectures for multirate DSP
algorithms," submitted to IEEE Transactions on VLSI Systems, November 1995.

[77] T. C. Denk and K. K. Parhi, "Architectures for lattice structure based orthonormal discrete
wavelet transforms," in Proc. of 1994 IEEE International Conf. on Application-Specific Array
Proc, (San Francisco, CA), pp. 259-270, IEEE Computer Society Press, August 1994.

[78] K. K. Parhi and T. C. Denk, "VLSI discrete wavelet transform architectures," in Proceedings
of First Annual RASSP Conference, (Arlington, VA), pp. 154-170, August 1994.

106

[79] T. C. Denk and K. K. Parhi, "VLSI architectures for lattice structure based orthonormal
discrete wavelet transforms," to appear in IEEE Transactions on Circuits and Systems-II:
Analog and Digital Signal Processing.

[80] A. Chandrakasan, S. Sheng, and R. Brodersen, "Low-power CMOS digital design," IEEE
Journal of Solid-State Circuits, vol. 27, pp. 473-484, April 1992.

[81] K. K. Parhi, "Systematic synthesis of DSP data format converters using life-time analysis
and forward-backward register allocation," IEEE Transactions on Circuits and Systems-II:
Analog and Digital Signal Processing, vol. 39, pp. 423-440, July 1992.

[82] L. Stok and J. Jess, "Foreground memory management in data path synthesis," Interational
Journal of Circuit Theory and Applications, vol. 20, pp. 235-255, 1992.

[83] J. Bae, V. Prasanna, and H. Park, "Synthesis of a class of data format converters with spec-
ified delays," in Proceedings of 1994 IEEE International Conference on Application-Specific
Array Processors, (San Francisco, CA), pp. 283-294, IEEE Computer Society Press, August
1994.

[84] C.-Y. Wang and K. K. Parhi, "High-level DSP synthesis using concurrent transformations,
scheduling, and allocation," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 14, pp. 274-295, March 1995.

[85] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice
Hall, 1993.

[86] A. K. Soman and P. P. Vaidyanathan, "On orthonormal wavelets and paraunitary filter
banks," IEEE Transactions on Signal Processing, vol. 41, pp. 1170-1183, March 1993.

[87] P. P. Vaidyanathan and P. Hoang, "Lattice structures for optimal design and robust imple-
mentation of two-channel perfect reconstruction QMF banks," IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. ASSP-36, pp. 81-94, January 1988.

[88] R. Hartley and P. Corbett, "Digit-serial processing techniques," IEEE Transactions on Cir-
cuits and Systems, vol. 37, pp. 707-719, June 1990.

[89] S. G. Smith and P. B. Denyer, Serial Data Computation. Boston, MA: Kluwer Academic,
1988.

[90] R. Coifman and M. Wickerhauser, "Entropy-based algorithms for best basis selection," IEEE
Transactions on Information Theory, vol. 38, pp. 713-718, March 1992.

[91] J. W. Lechleider, "High Bit Rate Digital Subscriber Lines: A Review of HDSL Progress,"
IEEE J-SAC, vol. 9, pp. 769-784, Aug. 1991.

[92] P.S. Chow et al, "Performance Evaluation of a Multichannel Transceiver System for ADSL
and VHDSL Services," IEEE J-SAC, vol. 9, pp. 909-919, Aug. 1991.

[93] D. W. Lin, C.-T. Chen, and T. R. Hsing, "Video On Phone Lines," Proc. IEEE, vol. "83(2)",
pp. 175-193, 1995.

[94] G. H. Im and J-J. Werner, "Bandwidth Efficient Digital Transmission up to 155 Mb/s Over
Unshielded Twisted-Pair Cables," IEEE Conf. on Commun., vol. 3, pp. 1797-1803, 1993.

107

[95] J. Chow, J. Tu, and J. Cioffi, "A Discrete Multitone Transceiver System for HDSL Applica-
tions," IEEE J-SAC, vol. 9, pp. 909-919, 1991.

[96] I. Kalet, "The multitone channel," IEEE Transactions on Communication, vol. 37, no. 2,
pp. 119-124, 1989.

[97] J. Bingham, "Multicarrier Modulation for Data Transmission: An Idea whose time Has
Come," IEEE Comm. Magazine, vol. 28, pp. 5-14, May 1990.

[98] G-H. Im et al, "51.84 Mb/s 16-CAP ATM LAN standard," IEEE Journal on Selected Areas
in Communications, vol. 13, no. 4, pp. 620-623, 1995.

[99] B.R. Petersen and D.D. Falconer, "Minimum mean square equalization in cyclostationary
and stationary interference- analysis and subscriber line calculations," IEEE J-SAC, vol. 9,
pp. 931-940, Aug. 1991.

[100] N. Shanbhag and K. K. Parhi, "Pipelined adaptive digital filters," Kluwer, 1994.

[101] D. Harman et al, "Local Distribution for IMTV," IEEE Multimedia, vol. 2, number 3, Fall
1995.

[102] P. P. Vaidyanathan, Multirate Systems and Filter Bank. Prentice Hall, 1993.

[103] R. K. Brayton et al, "A New Algorithm for Statistical Circuit Design Based on Quasi-
Newton Methods and Function Splitting," IEEE Transactions on Circuits and Systems.,
vol. 26, pp. 784-794, 1979.

[104] S. K. Jain and K. K. Parhi, "Efficient power based Galois Field arithmetic architectures," in
IEEE Workshop on VLSI Signal Processing, (San Diego), pp. 306-316, Oct. 1994.

[105] S. K. Jain and K. K. Parhi, "Low Latency standard basis GF(2m) multiplier and squarer
architectures," in Proc. IEEE ICASSP, (Detroit (MI)), pp. 2747-2750, May 1995.

[106] S. K. Jain and K. K. Parhi, "Efficient Standard Basis Reed-Solomon Encoder," in Proc. of
1996 IEEE Int. Conf. of Acoustics, Speech, and Signal Processing, (Atlanta), May 1996.

[107] L. Song and K. K. Parhi, "Efficient Finite Field Serial/Parallel Multiplication," in Proc. of In-
ternational Conf. on Application Specified Systems, Architectures and Processors, (Chicago),
Aug 1996.

[108] N. Weste and K. Eshranghiam, Principle of CMOS VLSI Design. Addison-Wesley Publishing
Company, 1992.

[109] C. C. W. et al, "VLSI Architectures for Computing Multiplications and Inverses in GF(2m),"
IEEE Trans, on Computers, vol. c-34, pp. 709-716, August 1985.

[110] C. L. Wang, "Bit-Level Systolic Array for Fast Exponentiation in GF(2m)," IEEE Trans, on
Computers, vol. 43, pp. 838-841, July 1994.

[Ill] G. Feng, "A VLSI architecture for fast inversion in GF(2m)," IEEE Trans, on Computers,
vol. 38, pp. 1383-1386, Oct 1989.

108

112] I. S. Hsu, T. K. Truong, L. J. Deutsch, and I. S. Reed, "A Comparison of VLSI Architecture of
Finite Field Multipliers using Dual, Normal, or Standard Bases," IEEE Trans on Computers,
vol. 37, pp. 735-739, June 1988.

113] J. Yuan and C. Svensson, "High-speed CMOS circuit techniques," IEEE Journal of Solid-
State Circuits, vol. 24, pp. 62-70, Feb 1989.

114] A. Salz and M. Horowitz, "IRSIM: An incremental MOS switch-level simulator," in Proc. of
26th ACE/IEEE Design Automation Conf., (1989), pp. 173-178, June.

115] C.-S. Yeh, I. S. Reed, and T. K. Truong, "Systolic Multipliers for Finite Fields GF(2m),"
IEEE Trans, on Computers, vol. c-33, pp. 357-360, April 1984.

116] E. R. Berlekamp, "Bit serial Reed-Solomon encoders," IEEE Trans on information Theory,
vol. IT-28, pp. 869-874, Nov. 1982.

117] S. W. Wei, "A Systolic Power-Sum Circuit for GF(2m)," IEEE Trans, on Computers, vol. 43,
pp. 226-229, Feb 1994.

118] R. E. Blahut, Theory and Pratice of Error Control Codes. Addison Wesley, 1984.

119] C. L. Wang and J. L. Lin, "Systolic Array Implementation of Multipliers for Finite Field
GF(2m)," IEEE Trans, on Circuits and Systems, vol. 38, pp. 796-800, July 1991.

120] M. A. Hasan and V. K. Bhargava, "Division and bit-serial multiplication over GF(gm)," IEE
Proceedings-E, vol. 139, pp. 230-236, May 1992.

121] P. A. Scott, S. E. Tavares, and L. E. Peppard, "A Fast VLSI Multiplier for GF(2m)," IEEE
Journal on Selected ares in Communications, vol. SAC-4, pp. 62-66, Jan. 1986.

122] J. H. Satyanarayana and K. K. Parhi, "HEAT: Hierarchical Energy Analysis Tool," in Proc.
33rd ACM/IEEE Design Automation Conf, (Las Vegas), pp. 9-14, June 1996.

123] A. P. Chandrakasan and R. W. Brodersen, "Minimizing power consumption in digital CMOS
circuits," Proceedings of the IEEE, vol. 83, pp. 498-523, April 1995.

124] D. Singh, J. M. Rabaey, M. Pedram, F. Catthoor, S. Rajgopal, N. Sehgal, and T. J. Mozdzen,
"Power conscious CAD tools and methodologies: A perspective," Proceedings of the IEEE,
vol. 83, pp. 570-, April 1995.

125] A. P. Chandrakasan and R. W. Brodersen, "Design of portable systems," in IEEE Custom
Integrated Circuits Conference, (San Diego, CA), pp. 259-266, May 1994.

126] S. D. Brown, "An overview of technology, architecture and CAD tools for programmable logic
devices," in IEEE Custom Integrated Circuits Conference, (San Diego, CA), pp. 69-76, May
1994.

127] V. Visvanathan and S. Ramanathan, "Synthesis of Energy-Efficient Configurable Processor
Arrays," in International workshop on Parallel Processing, 1994.

128] K. Parhi, C.Wang, and A.P.Brown, "Synthesis of control circuits in folded pipelined archi-
tecture s," IEEE J. Solid State Circuits, vol. 27, pp. 29-43, Jan 1992.

109

[129] C.E.Leiserson and J. Saxe, "Optimizing synchronous systems," in VLSI and Computer Sys-
tems, pp. 41-67, 1983.

[130] I. Koren, Computer Arithmetic Algorithms. Prentice-Hall, 1993.

[131] C. S. Wallace, "A suggestion for a fast multiplier," Computer Arithmetic, vol. 1, pp. 114-117,
1990.

[132] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Prospective.
Addison-Wesley Publishing Company, 2nd ed., 1993.

110

